• Laser & Optoelectronics Progress
  • Vol. 54, Issue 8, 81408 (2017)
Li Li1、*, Ju Youlun2, Dai Tongyu2, and Chen Fang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.081408 Cite this Article Set citation alerts
    Li Li, Ju Youlun, Dai Tongyu, Chen Fang. L-Shaped Single-Longitudinal-Mode Tm, Ho∶YAG Lasers Based on Twisted Mode Cavity[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81408 Copy Citation Text show less
    References

    [1] Galli I, Bartalini S, Cancio P, et al. Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy[J]. Opt Lett, 2014, 39(17): 5050-5053.

    [2] Koch G J, Beyon J Y, Barnes B W, et al. High-energy 2 μm Doppler lidar for wind measurements[J]. Opt Eng, 2007, 46(11): 116201.

    [3] Barria J B, Mammez D, Cadiou E, et al. Multispecies high-energy emitter for CO2, CH4, and H2O monitoring in the 2 μm range[J]. Opt Lett, 2014, 39(23): 6719-6722.

    [4] Wulfmeyer V, Bsenberg J. Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar[J]. Opt Lett, 1996: 21(15): 1150-1152.

    [5] Wu C T, Chen F, Ju Y L. A diode-pumped actively Q-switched and injection-seeded Tm∶LuAG laser at room temperature[J]. J Russ Laser Res, 2014, 35(4): 347-354.

    [6] Dai T Y, Ju Y L, Duan X M, et al. Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho∶YAlO3 laser at 2118 nm[J]. Appl Phys B, 2013, 111(1): 89-92.

    [7] Budni P A, Knights M G, Chicklis E P, et al. Performance of a diode-pumped high PRF Tm, Ho∶YLF laser[J]. IEEE J Quantum Electron, 1992, 28(4): 1029-1032.

    [8] Fei B J, Guo W, Huang J Q, et al. Spectroscopic properties and energy transfers in Cr, Tm, Ho triple-doped Y3Al5O12 transparent ceramics[J]. Opt Mater Express, 2013, 3(12): 2037-2044.

    [9] Liu Xu, Cheng Yong, Wan Qiang, et al. High temperature laser diode pumped all-solid-state laser[J]. Chinese J Lasers, 2016, 43(7): 0701003.

    [11] Han Long, Yuan Ligang, Chen Guo, et al. 26 W mid-infrared solid-state laser[J]. Chinese J Lasers, 2015, 42(3): 0302004.

    [12] Singh U N, Walsh B M, Yu J R, et al. Twenty years of Tm, Ho∶YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing[J]. Opt Mater Express, 2015, 5(4): 827-837.

    [13] Yao B Q, Chen F, Zhang C H, et al. Room temperature single-frequency output from a diode-pumped Tm, Ho∶YAP laser[J]. Opt Lett, 2011, 36(9): 1554-1556.

    [14] Zhang X L, Zhang S, Wang C Y, et al. Orthogonally polarized dual-wavelength single-longitudinal-mode Tm, Ho∶LLF laser[J]. Opt Express, 2013, 21(19): 22699-22704.

    [15] Wang L, Cai X W, Yang J W, et al. 520 mJ langasite electro-optically Q-switched Cr, Tm, Ho∶YAG laser[J]. Opt Lett, 2012, 37(11): 1986-1988.

    [16] Buryy O A, Sugak D Y, Ubizskii S B, et al. The comparative analysis and optimization of the free-running Tm3+∶YAP and Tm3+∶YAG microlasers[J]. Appl Phys B, 2007, 88(3): 433-442.

    [17] Ju Y L, Wang Q, Wu C T, et al. Lasing characteristics of a single frequency Tm∶YAG laser[J]. Laser Phys, 2010, 19(6): 1216-1219.

    [18] Cui Qingzhe, Wei Meng′en, Ling Lin, et al. Effect of water mist on threshold and damage of dentin ablation with Q-switched Er∶YAG laser[J]. Chinese J Lasers, 2016, 43(12): 1201003.

    [19] Dong Jian, Liu Xuesheng, Si Hanying, et al. 350 mJ LD side-pumped Q-switched Nd∶YAG laser without water cooling[J]. Chinese J Lasers, 2016, 43(11): 1101005.

    [20] Rothacher T, Luthy W, Weber H P. Spectral properties of a Tm, Ho∶YAG laser in active mirror configuration[J]. Appl Phys B, 1998, 66(5): 543-546.

    [21] Mark E S, Wayne W R. Single-longitudinal-mode lasing of Ho: Tm∶YAG at 2.091 μm[J]. Appl Opt, 1989, 28(23): 4965-4967.

    [22] Laporta P, Bava E, Svelto C, et al. Measurement and characterization of the frequency noise of a laser-diode-pumped single-frequency Tm-Ho∶YAG laser[J]. Opt Quant Electron, 2000, 32(9): 1081-1095.

    [23] Laporta P, Marano M, Pallaro L, et al. Amplitude and frequency stabilization of a Tm-Ho∶YAG laser for coherent lidar applications at 2.1 mm[J]. Opt Laser Eng, 2002, 37(5): 447-457.

    [24] Henderson S W, Hale C P. Tunable single-longitudinal-mode diode laser pumped Tm, Ho∶YAG laser[J]. Appl Opt, 1990, 29(12): 1716-1718.

    [25] He C, Killinger D K. Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1 microchip Ho, Tm∶YAG laser[J]. Opt Lett, 1994, 19(6): 396-398.

    [26] Lin Z, Gao C, Gao M Y, et al. Diode-pumped single-frequency microchip CTH∶YAG lasers using different pump spot diameters[J]. Appl Phys B, 2009, 94(1): 81-84.

    [27] Dai T Y, Ju Y L, Yao B Q, et al. Single-frequency, Q-switched Ho∶YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho∶YAG laser[J]. Opt Lett, 2012, 37(11): 1850-1852.

    [28] Evtuhov V, Siegman A E. A twisted-mode technique for obtaining axially uniform energy density in a laser cavity[J]. Appl Opt, 1965, 4(1): 142-143.

    Li Li, Ju Youlun, Dai Tongyu, Chen Fang. L-Shaped Single-Longitudinal-Mode Tm, Ho∶YAG Lasers Based on Twisted Mode Cavity[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81408
    Download Citation