• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823017 (2021)
Zhanghua Han1、2、3, Kaili Sun1、2、3, and Yangjian Cai1、2、3、*
Author Affiliations
  • 1Center of Light Manipulation and Applications, Shandong Normal University, Jinan, Shandong 250358, China
  • 2Shandong Provincial Key Laboratory of Optics and Photonic Devices, Jinan, Shandong 250358, China
  • 3Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan, Shandong 250358, China
  • show less
    DOI: 10.3788/AOS202141.0823017 Cite this Article Set citation alerts
    Zhanghua Han, Kaili Sun, Yangjian Cai. Research Progress of Micro-Nano Optical Structure and Terahertz Radiation Generation Technology[J]. Acta Optica Sinica, 2021, 41(8): 0823017 Copy Citation Text show less
    References

    [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [2] Liu X Q, Yao J L, Huang F et al. Study on detection of penicillin drugs based on terahertz time-domain spectroscopy[J]. Acta Optica Sinica, 40, 0630001(2020). http://www.researchgate.net/publication/339745727_Study_on_Detection_of_Penicillin_Drugs_Based_on_Terahertz_Time-Domain_Spectroscopy

    [3] Feng R S, Li W W, Zhou Q L et al. Terahertz spectroscopic investigations of explosives and the related compounds[J]. Proceedings of SPIE, 7158, 71580W(2009).

    [4] Cui Y, Li N, Wang X et al. Measurement of agricultural chemicals with terahertz spectroscopy[J]. Acta Optica Sinica, 29, 270-273(2009).

    [5] Greenland P T. Principles of terahertz science and technology[J]. Contemporary Physics, 53, 526-527(2012).

    [6] New G[M]. Introduction to nonlinear optics(2011).

    [7] Nishizawa J, Tanabe T, Suto K et al. Continuous-wave frequency-tunable terahertz-wave generation from GaP[J]. IEEE Photonics Technology Letters, 18, 2008-2010(2006).

    [8] Beermann J, Novikov S M, Søndergaard T et al. Two-photon mapping of localized field enhancements in thin nanostrip antennas[J]. Optics Express, 16, 17302-17309(2008).

    [9] Todorov Y, Sagnes I, Abram I et al. Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies[J]. Physical Review Letters, 99, 223603(2007).

    [10] Biagioni P, Huang J S, Hecht B. Nanoantennas for visible and infrared radiation[J]. Reports on Progress in Physics, 75, 024402(2012).

    [11] McIntosh K A, Nichols K B, Verghese S et al. Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs[J]. Applied Physics Letters, 70, 354-356(1997).

    [12] Berry C W, Hashemi M R, Preu S et al. Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation[J]. Optics Letters, 39, 4522-4524(2014).

    [13] Castro-Camus E, Alfaro M. Photoconductive devices for terahertz pulsed spectroscopy: a review[J]. Photonics Research, 4, A36-A42(2016).

    [14] Hoffmann S, Hofmann M R. Generation of terahertz radiation with two color semiconductor lasers[J]. Laser & Photonics Reviews, 1, 44-56(2007).

    [15] Preu S, Döhler G H, Malzer S et al. Tunable, continuous-wave terahertz photomixer sources and applications[J]. Journal of Applied Physics, 109, 061301(2011).

    [16] Gramotnev D K, Pors A, Willatzen M et al. Gap-plasmon nanoantennas and bowtie resonators[J]. Physical Review B, 85, 045434(2012).

    [17] Lepeshov S, Gorodetsky A, Krasnok A et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas[J]. Laser & Photonics Reviews, 11, 1770001(2017).

    [18] Park S G, Jin K H, Yi M et al. Enhancement of terahertz pulse emission by optical nanoantenna[J]. ACS Nano, 6, 2026-2031(2012).

    [19] Park S G, Choi Y, Oh Y J et al. Terahertz photoconductive antenna with metal nanoislands[J]. Optics Express, 20, 25530-25535(2012).

    [20] Berry C W, Wang N, Hashemi M R et al. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes[J]. Nature Communications, 4, 1622(2013).

    [21] Kinkhabwala A, Yu Z F, Fan S H et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).

    [22] Jooshesh A, Smith L, Masnadi-Shirazi M et al. Nanoplasmonics enhanced terahertz sources[J]. Optics Express, 22, 27992-28001(2014).

    [23] Ramanandan G K P, Adam A J L, Planken P C M. Enhanced terahertz emission from Schottky junctions using plasmonic nanostructures[J]. ACS Photonics, 1, 1165-1172(2014).

    [24] Ramakrishnan G, Kumar N. Ramanandan G K P, et al. Plasmon-enhanced terahertz emission from a semiconductor/metal interface[J]. Applied Physics Letters, 104, 071104(2014).

    [25] Mohammad-Zamani M J, Fathipour M, Neshat M et al. Bias-free and antenna-coupled CW terahertz array emitter with anomalous Schottky barriers[J]. JOSA B, 34, 1771-1779(2017).

    [26] Mohammad-Zamani M J, Moravvej-Farshi M K, Neshat M. Unbiased continuous wave terahertz photomixer emitters with dis-similar Schottky barriers[J]. Optics Express, 23, 19129-19141(2015).

    [27] Tanoto H, Teng J H, Wu Q Y et al. Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission[J]. Scientific Reports, 3, 2824(2013).

    [28] Khiabani N, Huang Y. Garcia-Muñoz L E, et al. A novel sub-THz photomixer with nano-trapezoidal electrodes[J]. IEEE Transactions on Terahertz Science and Technology, 4, 501-508(2014).

    [29] Yang S H, Jarrahi M. Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers[J]. Applied Physics Letters, 107, 131111(2015).

    [30] Zawadzka J, Jaroszynski D A, Carey J J et al. Evanescent-wave acceleration of ultrashort electron pulses[J]. Applied Physics Letters, 79, 2130-2132(2001).

    [31] Irvine S E, Elezzabi A Y. Surface-plasmon-based electron acceleration[J]. Physical Review A, 73, 013815(2006).

    [32] Welsh G H, Hunt N T, Wynne K. Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating[J]. Physical Review Letters, 98, 026803(2007).

    [33] Polyushkin D K, Hendry E, Stone E K et al. THz generation from plasmonic nanoparticle arrays[J]. Nano Letters, 11, 4718-4724(2011).

    [34] Polyushkin D K, Márton I, Rácz P et al. Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100 fs pulses of infrared light[J]. Physical Review B, 89, 125426(2014).

    [35] Kadlec F, Kužel P, Coutaz J L. Optical rectification at metal surfaces[J]. Optics Letters, 29, 2674-2676(2004).

    [36] Kadlec F, Kužel P, Coutaz J L. Study of terahertz radiation generated by optical rectification on thin gold films[J]. Optics Letters, 30, 1402-1404(2005).

    [37] Ramakrishnan G. Planken P C M. Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films[J]. Optics Letters, 36, 2572-2574(2011).

    [38] Kajikawa K, Nagai Y, Uchiho Y et al. Terahertz emission from surface-immobilized gold nanospheres[J]. Optics Letters, 37, 4053-4055(2012).

    [39] Luo L, Chatzakis I, Wang JG et al. Broadband terahertz generation from metamaterials[J]. Nature Communications, 5, 3055(2014).

    [40] Fang M, Huang Z X, Sha W et al. Maxwell-hydrodynamic model for simulating nonlinear terahertz generation from plasmonic metasurfaces[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2, 194-201(2017).

    [41] Fang M, Shen N H, Sha W et al. Nonlinearity in the dark: broadband terahertz generation with extremely high efficiency[J]. Physical Review Letters, 122, 027401(2019).

    [42] Novotny L, van Hulst N. Antennas for light[J]. Nature Photonics, 5, 83-90(2011).

    [43] Han Z H, Cai Y J, Levy U et al. Novel terahertz sources in the form of multispectral resonators boosted by both pump light local field enhancement and terahertz Purcell effect[J]. ACS Photonics, 6, 2223-2230(2019).

    [44] Kauranen M. Physics. Freeing nonlinear optics from phase matching[J]. Science, 342, 1182-1183(2013). http://www.ncbi.nlm.nih.gov/pubmed/24311673

    [45] Kuznetsov A I, Miroshnichenko A E, Brongersma M L et al. 354(6314): aag472(2016).

    [46] Miroshnichenko A E, Evlyukhin A B, Yu Y F et al. Nonradiating anapole modes in dielectric nanoparticles[J]. Nature Communications, 6, 8069(2015). http://www.nature.com/articles/ncomms9069

    [47] Klein M W, Enkrich C, Wegener M et al. Second-harmonic generation from magnetic metamaterials[J]. Science, 313, 502-504(2006). http://www.ncbi.nlm.nih.gov/pubmed/16873661

    [48] Liu S, Sinclair M B, Saravi S et al. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces[J]. Nano Letters, 16, 5426-5432(2016). http://www.ncbi.nlm.nih.gov/pubmed/27501472

    [49] Gili V F, Carletti L, Locatelli A et al. Monolithic AlGaAs second-harmonic nanoantennas[J]. Optics Express, 24, 15965-15971(2016).

    [50] Siday T, Vabishchevich P P, Hale L et al. Terahertz detection with perfectly-absorbing photoconductive metasurface[J]. Nano Letters, 19, 2888-2896(2019).

    [51] Timofeeva M, Lang L, Timpu F et al. Anapoles in free-standing III-V nanodisks enhancing second-harmonic generation[J]. Nano Letters, 18, 3695-3702(2018).

    [52] Hsu C W, Zhen B, Douglas Stone A et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [53] Rybin M V, Koshelev K L, Sadrieva Z F et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017).

    [54] Carletti L, Koshelev K, De Angelis C et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 121, 033903(2018). http://arxiv.org/abs/1804.02947v1

    [55] Koshelev K, Kruk S, Melik-Gaykazyan E et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 367, 288-292(2020).

    [56] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).

    Zhanghua Han, Kaili Sun, Yangjian Cai. Research Progress of Micro-Nano Optical Structure and Terahertz Radiation Generation Technology[J]. Acta Optica Sinica, 2021, 41(8): 0823017
    Download Citation