• Journal of Inorganic Materials
  • Vol. 35, Issue 8, 909 (2020)
Xueyuan LI1、2, Honggang WANG1、3, Zhu TIAN1, Jianhui ZHU2, Ying LIU2, Lan JIA1, Dongjiang YOU2, Xiangming LI2, and Litao KANG2、*
Author Affiliations
  • 1College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 2School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
  • 3Weichai Power Co., Ltd., Weifang 261001, China
  • show less
    DOI: 10.15541/jim20190473 Cite this Article
    Xueyuan LI, Honggang WANG, Zhu TIAN, Jianhui ZHU, Ying LIU, Lan JIA, Dongjiang YOU, Xiangming LI, Litao KANG. A Quasi-gel SiO2/Sodium Alginate (SA) Composite Electrolyte for Long-life Zinc-manganese Aqueous Batteries[J]. Journal of Inorganic Materials, 2020, 35(8): 909 Copy Citation Text show less
    References

    [1] Q PANG, C SUN, YUY et al. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Advanced Energy Materials, 8, 1800144(2018).

    [2] M HILDER, B WINTHER-JENSEN, N B CLARK. The effect of binder and electrolyte on the performance of thin zinc-air battery. Electrochimica Acta, 69, 8-14(2012).

    [3] X DAI, F WAN, L ZHANG et al. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Materials, 17, 43-50(2019).

    [4] X ZHANG, S WU, S DENG et al. 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn-MnO2 batteries. Small Methods, 3, 1900525(2019).

    [5] H ZHANG, Q LIU, Y FANG et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Advanced Materials, 31, 1904948(2019).

    [6] J W GALLAWAY, D DESAI, A GAIKWAD et al. A lateral microfluidic cell for imaging electrodeposited zinc near the shorting condition. Journal of The Electrochemical Society, 157, A1279-A1286(2010).

    [7] X B CHENG, T Z HOU, R ZHANG et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Advanced Materials, 28, 2888-2895(2016).

    [8] S HIGASHI, S W LEE, J S LEE et al. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications, 7, 11801(2016).

    [9] J F PARKER, C N CHERVIN, I R PALA et al. Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium- ion. Science, 356, 415(2017).

    [10] Y ZENG, X ZHANG, R QIN et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Advanced Materials, 31, 1903675(2019).

    [11] K N WOOD, E KAZYAK, A F CHADWICK et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2, 790-801(2016).

    [12] M D SLATER, D KIM, E LEE et al. Sodium-ion batteries. Advanced Functional Materials, 23, 947-58(2013).

    [13] L XUE, H GAO, W ZHOU et al. Liquid K-Na alloy anode enables dendrite-free potassium batteries. Advanced Materials, 28, 9608-9612(2016).

    [14] L KANG, M CUI, F JIANG et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Advanced Energy Materials, 8, 1801090(2018).

    [15] N CHEN, Y DAI, Y XING et al. Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy & Environmental Science, 10, 1660-1667(2017).

    [16] R ZHANG, X R CHEN, X CHEN et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angewandte Chemie International Edition, 56, 7764-7768(2017).

    [17] M CUI, Y XIAO, L KANG et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Applied Energy Materials, 2, 6490-6496(2019).

    [18] F DING, W XU, G L GRAFF et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. Journal of the American Chemical Society, 135, 4450-4456(2013).

    [19] F WANG, O BORODIN, T GAO et al. Highly reversible zinc metal anode for aqueous batteries. Nature Materials, 17, 543-549(2018).

    [20] W XU, K ZHAO, W HUO et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy, 62, 275-281(2019).

    [21] J HUANG, X CHI, Q HAN et al. Thickening and homogenizing aqueous electrolyte towards highly efficient and stable Zn metal batteries. Journal of The Electrochemical Society, 166, A1211-A1216(2019).

    [22] S K MARTHA, B HARIPRAKASH, S A GAFFOOR et al. Performance characteristics of a gelled-electrolyte valve-regulated lead- acid battery. Bulletin of Materials Science, 26, 465-469(2003).

    [23] X HOU, Z XUE, Y XIA et al. Effect of SiO2 nanoparticle on the physical and chemical properties of eco-friendly agar/sodium alginate nanocomposite film. International Journal of Biological Macromolecules, 125, 1289-1298(2019).

    [24] M YADAV, K Y RHEE, S J PARK. Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohydrate Polymers, 110, 18-25(2014).

    [25] EZ E GÓMEZ-ORD, REZ P RUP. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 25, 1514-1520(2011).

    [26] H DAEMI, M BARIKANI. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, 19, 2023-2028(2012).

    [27] J Y SUN, X ZHAO, W R ILLEPERUMA et al. Highly stretchable and tough hydrogels. Nature, 489, 133-136(2012).

    [28] M YANG, Y XIA, Y WANG et al. Preparation and property investigation of crosslinked alginate/silicon dioxide nanocomposite films. Journal of Applied Polymer Science, 133, 15-27(2016).

    [29] J YAN, J WANG, H LIU et al. Rechargeable hybrid aqueous batteries. Journal of Power Sources, 216, 222-226(2012).

    [30] X WEI, D DESAI, G G YADAV et al. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries. Electrochimica Acta, 212, 603-613(2016).

    [31] Z WANG, J HUANG, Z GUO et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule, 3, 1289-1300(2019).

    [32] W SUN, F WANG, S HOU et al. Zn/MnO2 Battery Chemistry with H + and Zn 2+ coinsertion. Journal of the American Chemical Society, 139, 9775-9778(2017).

    [33] J HUANG, Z WANG, M HOU et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 9, 2906(2018).

    [34] TUAN K A HOANG, T N L DOAN., C Y LU et al. Performance of thixotropic gel electrolytes in the rechargeable aqueous Zn/ LiMn2O4 battery. ACS Sustainable Chemistry & Engineering, 5, 1804-1811(2016).

    [35] N ZHANG, F CHENG, J LIU et al. Rechargeable aqueous zinc- manganese dioxide batteries with high energy and power densities. Nature Communications, 8, 405(2017).

    [36] K ZENG, X H LI, Z WANG et al. Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries. Electrochimica Acta, 795-802(2017).

    [37] W C CHEN, T C WEN. Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. Journal of Power Sources, 117, 273-282(2003).

    [38] K E K SUN, T K A HOANG, T N L DOAN et al. Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chemistry - A European Journal, 24, 1667-1673(2018).

    [39] N LI, W WEI, K XIE et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries. Nano Letters, 18, 2067-2073(2018).

    [40] W LIU, W LI, D ZHUO et al. Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent. Sci., 3, 135-140(2017).

    Xueyuan LI, Honggang WANG, Zhu TIAN, Jianhui ZHU, Ying LIU, Lan JIA, Dongjiang YOU, Xiangming LI, Litao KANG. A Quasi-gel SiO2/Sodium Alginate (SA) Composite Electrolyte for Long-life Zinc-manganese Aqueous Batteries[J]. Journal of Inorganic Materials, 2020, 35(8): 909
    Download Citation