• Journal of Semiconductors
  • Vol. 45, Issue 4, 040203 (2024)
Mo Huang*, Yuanfei Wang, Rui P. Martins, and Yan Lu
Author Affiliations
  • State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao, China
  • show less
    DOI: 10.1088/1674-4926/45/4/040203 Cite this Article
    Mo Huang, Yuanfei Wang, Rui P. Martins, Yan Lu. Recent advancements in continuously scalable conversion-ratio switched-capacitor converter[J]. Journal of Semiconductors, 2024, 45(4): 040203 Copy Citation Text show less
    References

    [1] M D Seeman, S R Sanders. Analysis and optimization of switched-capacitor DC–DC converters. IEEE Trans Power Electron, 23, 841(2008).

    [2] Y F Wang, M Huang, P Luo et al. Adaptive maximum power point tracking with model-based negative feedback control and improved V–f model. IEEE Trans Circuits Syst II, 68, 3103(2021).

    [3] H P Le, S R Sanders, E Alon. Design techniques for fully integrated switched-capacitor DC-DC converters. IEEE J Solid-State Circuits, 46, 2120(2011).

    [4] N Butzen, M Steyaert. Design of single-topology continuously scalable-conversion-ratio switched- capacitor DC–DC converters. IEEE J Solid-State Circuits, 54, 1039(2019).

    [5] H Kim, J Maeng, I Park et al. A dual-mode continuously scalable-conversion-ratio SC energy harvesting interface with SC-based PFM MPPT and flying capacitor sharing scheme. IEEE J Solid-State Circuits, 56, 2724(2021).

    [6] Y Yoon, H Gi, J Lee et al. A continuously-scalable-conversion-ratio step-up/down SC energy-harvesting interface with MPPT enabled by real-time power monitoring with frequency-mapped capacitor DAC. IEEE Trans Circuits Syst I Regul Pap, 69, 1820(2022).

    [7] Y F Wang, M Huang, Y Lu et al. A continuously scalable-conversion-ratio SC converter with reconfigurable VCF step for high efficiency over an extended VCR range, 1(2023).

    [8] Y F Wang, M Huang, R P Martins et al. A SIDO/DISO VCF-step-reconfigurable continuously scalable-conversion-ratio SC converter achieving 91.4%/92.6% peak efficiency and almost-lossless channel switching, 506(2024).

    [9] N Butzen, H. Ahmed Z Krishnarnurthy et al. A monolithic 26A/mm2 Imax, 88.5% peak-efficiency continuously scalable conversion-ratio switched-capacitor DC-DC converter, 232(2023).

    [10] N Butzen, H Krishnamurthy, J Yu et al. A monolithic 12.7W/mm2-Pmax, 92% peak-efficiency CSCR-first switched-capacitor DC-DC converter, 462(2024).

    [11] N Butzen, M S J Steyaert. Design of soft-charging switched-capacitor DC–DC converters using stage outphasing and multiphase soft-charging. IEEE J Solid-State Circuits, 52, 3132(2017).

    [12] X Yang, H X Cao, C K Xue et al. An 8A 998A/inch3 90.2% peak efficiency 48V-to-1V DC-DC converter adopting on-chip switch and GaN hybrid power conversion, 466(2021).

    [13] J Y Yuan, Z G Liu, F Wu et al. A 12V/24V-to-1V DSD power converter with 56mV droop and 0.9μs 1% settling time for a 3A/20ns load transient, 1(2022).

    [14] T X Hu, M Huang, Y Lu et al. A 4A 12-to-1 flying capacitor cross-connected DC-DC converter with inserted D>0.5 control achieving >2x transient inductor current slew rate and 0.73 × theoretical minimum output undershoot of DSD, 1(2022).

    [15] T Hu, M Huang, Y Lu et al. A 12V-to-1V quad-output switched-capacitor buck converter with shared DC capacitors achieving 90.4% peak efficiency and 48mA/mm3 power density at 85% efficiency, 184(2023).

    [16] Y Lu, G Cai, J Huang. Favorable basic cells for hybrid DC–DC converters. J Semicond, 44, 040301(2023).

    Mo Huang, Yuanfei Wang, Rui P. Martins, Yan Lu. Recent advancements in continuously scalable conversion-ratio switched-capacitor converter[J]. Journal of Semiconductors, 2024, 45(4): 040203
    Download Citation