• Chinese Optics Letters
  • Vol. 20, Issue 11, 113701 (2022)
Siyang Hu1, Cheng Xiang’ai1, Weibao He1, Yuze Hu2, Mingyu Tong1, and Zhongjie Xu1、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100020, China
  • show less
    DOI: 10.3788/COL202220.113701 Cite this Article Set citation alerts
    Siyang Hu, Cheng Xiang’ai, Weibao He, Yuze Hu, Mingyu Tong, Zhongjie Xu. Inversely-designed terahertz metadevice with ultrafast modulation of double electromagnetically induced transparency windows[J]. Chinese Optics Letters, 2022, 20(11): 113701 Copy Citation Text show less
    References

    [1] L. Wang, J.-X. Sun, M.-X. Luo, Y.-H. Sun, X.-X. Wang, Y. Chen, Z.-H. Kang, H.-H. Wang, J.-H. Wu, J.-Y. Gao. Image routing via atomic spin coherence. Sci. Rep., 5, 18179(2015).

    [2] L. Chen, Z. Xu, W. Zeng, Y. Wen, S. Li, H. Wang. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels. Sci. Rep., 6, 33959(2016).

    [3] L. Fan, K. Y. Fong, M. Poot, H. X. Tang. Cascaded optical transparency in multimode-cavity optomechanical systems. Nat. Commun., 6, 5850(2015).

    [4] X. Yang, B. Xue, J. Zhang, S. Zhu. A universal quantum information processor for scalable quantum communication and networks. Sci. Rep., 4, 6629(2014).

    [5] Y.-L. Chuang, R.-K. Lee, A. Y. Ite. Generation of quantum entanglement based on electromagnetically induced transparency media. Opt. Express, 29, 3928(2021).

    [6] X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, J. Jiang. Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial. Carbon, 123, 668(2017).

    [7] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy, 68, 104280(2020).

    [8] Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, H. Cheng, T. Ma, Y. Lu. Ultrafast control of slow light in THz electromagnetically induced transparency metasurfaces. Chin. Opt. Lett., 19, 073602(2021).

    [9] T. Ma, Q. Huang, H. He, Y. Zhao, X. Lin, Y. Lu. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range. Opt. Express, 27, 16624(2019).

    [10] L. Zhu, H. Li, L. Dong, W. Zhou, M. Rong, X. Zhang, J. Guo. Dual-band electromagnetically induced transparency (EIT) terahertz metamaterial sensor. Opt. Mater. Express, 11, 2109(2021).

    [11] C. Liu, P. Liu, C. Yang, Y. Lin, S. Zha. Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial. Opt. Mater. Express, 8, 1132(2018).

    [12] Y. Hu, T. Jiang, H. Sun, M. Tong, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast frequency shift of electromagnetically induced transparency in terahertz metaphotonic devices. Laser Photonics Rev., 14, 1900338(2020).

    [13] Y. Hu, M. Tong, Z. Xu, X. Cheng, T. Jiang. Spatiotemporal terahertz metasurfaces for ultrafast all-optical switching with electric-triggered bistability. Laser Photonics Rev., 15, 2000456(2021).

    [14] Y.-Y. Ji, F. Fan, M. Chen, L. Yang, S.-J. Chang. Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice. Opt. Express, 25, 11405(2017).

    [15] K. Liu, X. Chen, M. Lian, J. Jia, Y. Su, H. Ren, S. Zhang, Y. Xu, J. Chen, Z. Tian, T. Cao. Nonvolatile reconfigurable electromagnetically induced transparency with terahertz chalcogenide metasurfaces. Laser Photonics Rev., 16, 2100393(2022).

    [16] H. Yao, Z. Sun, X. Yan, M. Yang, L. Liang, G. Ma, J. Gao, T. Li, X. Song, H. Zhang, Q. Yang, X. Hu, Z. Wang, Z. Li, J. Yao. Ultrasensitive, light-induced reversible multidimensional biosensing using THz metasurfaces hybridized with patterned graphene and perovskite. Nanophotonics, 11, 1219(2022).

    [17] T. Zhou, S. Chen, X. Zhang, X. Zhang, H. Hu, Y. Wang. Electromagnetically induced transparency based on a carbon nanotube film terahertz metasurface. Opt. Express, 30, 15436(2022).

    [18] R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, F. Zhang. Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators. Photonics Res., 7, 955(2019).

    [19] Y. Hu, M. Tong, Z. Xu, X. Cheng, T. Jiang. Bifunctional spatiotemporal metasurfaces for incident angle-tunable and ultrafast optically switchable electromagnetically induced transparency. Small, 17, 2006489(2021).

    [20] Z. Bai, Q. Zhang, G. Huang. Nonlinear polaritons in metamaterials with plasmon-induced transparency. Chin. Opt. Lett., 17, 012501(2019).

    [21] J. Hwang, Y. Kim, Y. Yoo, K. Kim, J. Rhee, L. Chen, S. Li, X. Guo, Y. Lee. Tunable quad-band transmission response, based on single-layer metamaterials. Opt. Express, 26, 31607(2018).

    [22] K. Zhang, C. Wang, L. Qin, R.-W. Peng, D.-H. Xu, X. Xiong, M. Wang. Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial. Opt. Lett., 39, 3539(2014).

    [23] S. Hu, H. Yang, S. Han, X. Huang, B. Xiao. Tailoring dual-band electromagnetically induced transparency in planar metamaterials. J. Appl. Phys., 117, 043107(2015).

    [24] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659(2018).

    [25] S. So, T. Badloe, J. Noh, J. Rho, J. Bravo-Abad. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041(2020).

    [26] D. Rafique, L. Velasco. Machine learning for network automation: overview, architecture, and applications [Invited Tutorial]. J. Opt. Commun. Netw., 10, D126(2018).

    [27] S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, D. H. Werner. Review of numerical optimization techniques for meta-device design. Opt. Mater. Express, 9, 1842(2019).

    [28] B. Shen, P. Wang, R. Polson, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint. Nat. Photonics, 9, 378(2015).

    [29] C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, E. Yablonovitch. Adjoint shape optimization applied to electromagnetic design. Opt. Express, 21, 21693(2013).

    [30] M. D. Huntington, L. J. Lauhon, T. W. Odom. Subwavelength lattice optics by evolutionary design. Nano Lett., 14, 7195(2014).

    [31] P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, A. Arbouet. Design of plasmonic directional antennas via evolutionary optimization. Opt. Express, 27, 29069(2019).

    [32] Z. Yu, H. Cui, X. Sun. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett., 42, 3093(2017).

    [33] Z. Lin, X. Liang, M. Lončar, S. G. Johnson, A. W. Rodriguez. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica, 3, 233(2016).

    [34] Y. Yan, P. Liu, X. Zhang, Y. Luo. Photonic crystal topological design for polarized and polarization-independent band gaps by gradient-free topology optimization. Opt. Express, 29, 24861(2021).

    [35] Z. Lin, V. Liu, R. Pestourie, S. G. Johnson. Topology optimization of freeform large-area metasurfaces. Opt. Express, 27, 15765(2019).

    [36] B. Shen, P. Wang, R. Polson, R. Menon. Ultra-high-efficiency metamaterial polarizer. Optica, 1, 356(2014).

    [37] X. Ju, G. Zhu, F. Huang, Z. Dai, Y. Chen, C. Guo, L. Deng, X. Wang. Reverse design of pixel-type terahertz band-pass filters. Opt. Express, 30, 957(2022).

    [38] Y. Zhang, S. Yang, A. Eu-Jin Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express, 21, 1310(2013).

    [39] J. C. Mak, C. Sideris, J. Jeong, A. Hajimiri, J. K. Poon. Binary particle swarm optimized 2 x 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett., 41, 3868(2016).

    [40] J. Li, L. Bao, S. Jiang, Q. Guo, D. Xu, B. Xiong, G. Zhang, F. Yi. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging. Opt. Express, 27, 8375(2019).

    [41] R. Hassan, B. Cohanim, O. de Weck, G. Venter. A comparison of particle swarm optimization and the genetic algorithm. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences(2005).

    [42] W. He, M. Tong, Z. Xu, Y. Hu, X. Cheng, T. Jiang. Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface. Photonics Res., 9, 1099(2021).

    [43] W. Huang, J. Lin, M. Qiu, T. Liu, Q. He, S. Xiao, L. Zhou. A complete phase diagram for dark-bright coupled plasmonic systems: applicability of Fano’s formula. Nanophotonics, 9, 3251(2020).

    [44] W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, R. Singh. Ultrafast all-optical switching of germanium-based flexible metaphotonic devices. Adv. Mater., 30, 1705331(2018).

    [45] Y. Hu, H. Hao, J. Zhang, M. Tong, X. Cheng, T. Jiang. Anisotropic temporal metasurfaces for tunable ultrafast photoactive switching dynamics. Laser Photonics Rev., 15, 2100244(2021).

    [46] H. J. Joyce, J. L. Boland, C. L. Davies, S. A. Baig, M. B. Johnston. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. Semicond. Sci. Technol., 31, 103003(2016).

    Data from CrossRef

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [1] Han‐Qing Dong, Cheng‐Jing Gao, Hai‐Feng Zhang.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    [2] M. Sanchez, C. Everly, P. A. Postigo.

    Siyang Hu, Cheng Xiang’ai, Weibao He, Yuze Hu, Mingyu Tong, Zhongjie Xu. Inversely-designed terahertz metadevice with ultrafast modulation of double electromagnetically induced transparency windows[J]. Chinese Optics Letters, 2022, 20(11): 113701
    Download Citation