• Journal of Inorganic Materials
  • Vol. 37, Issue 2, 182 (2022)
Tingting LI1、2, Yang ZHANG2, Jiahang CHEN2, Yulin MIN1, and Jiulin WANG2、3
Author Affiliations
  • 11. College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • 22. College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 33. Department of Chemistry, Zhengzhou University, Zhengzhou 450001, China
  • show less
    DOI: 10.15541/jim20210303 Cite this Article
    Tingting LI, Yang ZHANG, Jiahang CHEN, Yulin MIN, Jiulin WANG. Flexible Binder for S@pPAN Cathode of Lithium Sulfur Battery[J]. Journal of Inorganic Materials, 2022, 37(2): 182 Copy Citation Text show less
    References

    [1] R KUMAR, J LIU, Y HWANG J et al. Recent research trends in Li-S batteries. Journal of Materials Chemistry A, 6, 11582-11605(2018).

    [2] V NOORDEN R. The rechargeable revolution: a better battery. Nature, 507, 26-28(2014).

    [3] Q ZHANG, L WAN H, Z LIU G et al. Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy, 57, 771-782(2019).

    [4] W SEH Z, M SUN Y, F ZHANG Q et al. Designing high-energy lithium-sulfur batteries. Chemical Society Reviews, 45, 5605-5634(2016).

    [5] L ZHANG, M LING, J FENG et al. Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy, 40, 559-565(2017).

    [6] W CHEN, Y LEI T, T QIAN et al. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium-sulfur battery. Advanced Energy Materials, 8, 1702889(2018).

    [7] Z ZHU Q, Z QIAN, B AN Y et al. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery. Nano Energy, 33, 402-409(2017).

    [8] P FANG R, Y ZHAO S, F PEI S et al. Toward more reliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano, 10, 8676-8682(2016).

    [9] K PARK S, K LEE J, C KANG Y. Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries. Advanced Functional Materials, 28, 1705264(2018).

    [10] W SHE Z, Y LI W, J CHA et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nature Communications, 4, 1331(2013).

    [11] S YANG Y, S YAN, X CAO Z et al. Preparation of hierarchical porous carbon/sulfur composite based on lotus-leaves and its property for Li-S batteries. Journal of Inorganic Materials, 31, 135-140(2016).

    [12] J WANG, J CHEN, K KONSTANTINOV et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochimica Acta, 51, 4634-4638(2006).

    [13] J YANG H, H CHEN J, J YANG et al. Dense and high loading sulfurized pyrolyzed poly (acrylonitrile)(S@pPAN) cathode for rechargeable lithium batteries. Energy Storage Materials, 31, 187-194(2020).

    [14] Y CHAI E, A PAN J, L YUAN G et al. Preparation and electrochemical property of polyaniline coated opal shale/sulfur composite. Journal of Inorganic Materials, 32, 1165-1170(2017).

    [15] L LU L, Y ZHANG, Z PAO et al. Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Materials, 9, 31-38(2017).

    [16] Q FAN, W LIU, Z WENG et al. Ternary hybrid material for high- performance lithium-sulfur battery. Journal of the American Chemical Society, 137, 12946-12953(2015).

    [17] Q MA G, Y WEN Z, S WANG Q et al. Effects of CeO2 nano-crystal on electrochemical properties of lithium/sulfur batteries. Journal of Inorganic Materials, 30, 913-918(2015).

    [18] L WANG J, J YANG, Y XIE J et al. A novel conductive polymer- sulfur composite cathode material for rechargeable lithium batteries. Advanced Materials, 14, 963-965(2002).

    [19] J YANG H, C GUO, H CHEN J et al. An intrinsic flame-retardant organic electrolyte for safe lithium sulfur batteries. Angewandte Chemie International Edition, 58, 791-795(2019).

    [20] C YIN L, L WANG J, J LIN F et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy & Environmental Science, 5, 6966-6972(2012).

    [21] J YANG H, A NAVEED, Y LI Q et al. Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite- free anode. Energy Storage Materials, 15, 299-307(2018).

    [22] X XU Z, L WANG J, J YANG et al. Enhanced performance of a lithium-sulfur battery using a carbonate-based electrolyte. Angewandte Chemie International Edition, 55, 10372-10375(2016).

    [23] L WANG J, S HE Y, J YANG. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Advanced Materials, 27, 569-575(2015).

    [24] J LI, B LEWIS R, R DAHN J. Sodium carboxymethyl cellulose-a potential binder for Si negative. Electrochemical and Solid-State Letters, 10, A17-A20(2007).

    [25] Z KARKAR, D GUYOMARD, L ROUE et al. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochimica Acta, 258, 453-466(2017).

    [26] J YANG H, H CHEN J, L WANG J et al. Prospect of sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN) cathode materials for rechargeable lithium batteries. Angewandte Chemie International Edition, 59, 7306-7318(2020).

    [27] W WANG W, Y YUE X, K MENG J et al. Comparative study of water-based LA133 and CMC/SBR binders for sulfur cathode in advanced lithium-sulfur batteries. The Journal of Physical Chemistry C, 123, 250-257(2018).

    [28] L WANG J, J YANG, R WAN C et al. Sulfur composite cathode materials for rechargeable lithium batteries. Advanced Functional Materials, 13, 487-492(2003).

    [30] R LI G, M LING, F YE Y et al. Acacia Senegal-inspired bifunctional binder for longevity of lithium-sulfur batteries. Advanced Energy Materials, 5, 1500878(2015).

    [31] C LI G, R LI G, H YE S et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Advanced Energy Materials, 2, 1238-1245(2012).

    [32] H HONG X, J JIN, Y WEN Z et al. On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders. Journal of Power Sources, 324, 455-461(2012).

    [33] M RAO M, Y SONG X, G LIAO H et al. Carbon nanofiber-sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochimica Acta, 65, 228-233(2012).

    [34] L WANG J, D YAO Z, MONROE et al. Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Advanced Functional Materials, 23, 1194-1201(2013).

    [35] Y LI Q, J YANG H, S XIE L. Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chemical Communications, 52, 13479-13482.

    [36] C YIN L, L WANG J, L YU X et al. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries. Chemical Communications, 48, 7868-7870(2012).

    [37] H CHEN J, M ZHANG H, J YANG H et al. Towards practical Li-S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Materials, 27, 307-315(2020).

    Tingting LI, Yang ZHANG, Jiahang CHEN, Yulin MIN, Jiulin WANG. Flexible Binder for S@pPAN Cathode of Lithium Sulfur Battery[J]. Journal of Inorganic Materials, 2022, 37(2): 182
    Download Citation