• Photonics Research
  • Vol. 9, Issue 6, 1134 (2021)
Yun-Ru Fan1, Chen-Zhi Yuan1、5、*, Rui-Ming Zhang1, Si Shen1, Peng Wu1, He-Qing Wang2, Hao Li2, Guang-Wei Deng1, Hai-Zhi Song1、3, Li-Xing You2, Zhen Wang2, You Wang1、3、6、*, Guang-Can Guo1、4, and Qiang Zhou1、4、7、*
Author Affiliations
  • 1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 3Southwest Institute of Technical Physics, Chengdu 610041, China
  • 4CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 5e-mail: c.z.yuan@uestc.edu.cn
  • 6e-mail: youwang_2007@aliyun.com
  • 7e-mail: zhouqiang@uestc.edu.cn
  • show less
    DOI: 10.1364/PRJ.421180 Cite this Article Set citation alerts
    Yun-Ru Fan, Chen-Zhi Yuan, Rui-Ming Zhang, Si Shen, Peng Wu, He-Qing Wang, Hao Li, Guang-Wei Deng, Hai-Zhi Song, Li-Xing You, Zhen Wang, You Wang, Guang-Can Guo, Qiang Zhou. Effect of dispersion on indistinguishability between single-photon wave-packets[J]. Photonics Research, 2021, 9(6): 1134 Copy Citation Text show less
    References

    [1] J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, A. J. Shields. Interference of dissimilar photon sources. Nat. Phys., 5, 715-717(2009).

    [2] J. Menssen, A. E. Jones, B. J. Metcalf, M. C. Tichy, S. Barz, W. S. Kolthammer, I. A. Walmsley. Distinguishability and many-particle interference. Phys. Rev. Lett., 118, 153603(2017).

    [3] J. S. Tang, Y. L. Li, X. Y. Xu, G. Y. Xiang, C. F. Li, G. C. Guo. Realization of quantum Wheeler’s delayed-choice experiment. Nat. Photonics, 6, 600-604(2012).

    [4] A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, J. L. O’Brien. A quantum delayed-choice experiment. Science, 338, 634-637(2012).

    [5] F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, S. Tanzilli. Entanglement-enabled delayed-choice experiment. Science, 338, 637-640(2012).

    [6] S. P. Walborn, A. N. de Oliveira, S. Padua, C. H. Monken. Multimode Hong-Ou-Mandel interference. Phys. Rev. Lett., 90, 143601(2003).

    [7] Z. Y. Ou. Temporal distinguishability of an N-photon state and its characterization by quantum interference. Phys. Rev. A, 74, 063808(2006).

    [8] E. Moschandreou, J. I. Garcia, B. J. Rollick, B. Qi, R. Pooser, G. Siopsis. Experimental study of Hong-Ou-Mandel interference using independent phase randomized weak coherent states. J. Lightwave Technol., 36, 3752-3759(2018).

    [9] R. B. Jin, T. Gerrits, M. Fujiwara, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, R. Shimizu, M. Takeoka, M. Sasaki. Spectrally resolved Hong-Ou-Mandel interference between independent sources. Opt. Express, 23, 28836-28848(2015).

    [10] T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, N. Imoto. Frequency-domain Hong-Ou-Mandel interference. Nat. Photonics, 10, 441-444(2016).

    [11] L. Y. Qu, J. Cotler, F. Ma, J. Y. Guan, M. Y. Zheng, X. P. Xie, Y. A. Chen, Q. Zhang, F. Wilczek, J. W. Pan. Color erasure detectors enable chromatic interferometry. Phys. Rev. Lett., 123, 243601(2019).

    [12] A. Lyons, T. Roger, N. Westerberg, S. Vezzoli, C. Maitland, J. Leach, M. J. Padgett, D. Faccio. How fast is a twisted photon?. Optica, 5, 682-686(2018).

    [13] R. Valivarthi, M. G. Puigibert, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, W. Tittle. Quantum teleportation across a metropolitan fibre network. Nat. Photonics, 10, 676-680(2016).

    [14] Q. C. Sun, Y. L. Mao, S. J. Chen, W. Zhang, Y. F. Jiang, Y. B. Zhang, W. J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, J.-W. Pan. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photonics, 10, 671-675(2016).

    [15] H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, J.-W. Pan. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett., 117, 190501(2016).

    [16] A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, W. Tittel. Real-world two-photon interference and proof-of-principle QKD immune to detector attacks. Phys. Rev. Lett., 111, 130501(2013).

    [17] Z. Y. Tang, Z. F. Liao, F. H. Xu, B. Qi, L. Qian, H. K. Lo. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett., 112, 190503(2014).

    [18] S. Y. Baek, O. Kwon, Y. H. Kim. Nonlocal dispersion control of a single-photon waveform. Phys. Rev. A, 78, 013816(2008).

    [19] J. D. Franson. Nonlocal cancellation of dispersion. Phys. Rev. A, 45, 3126-3132(1992).

    [20] A. M. Steinberg, P. G. Kwiat, R. Y. Chiao. Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer. Phys. Rev. A, 45, 6659-6665(1992).

    [21] A. M. Steinberg, P. G. Kwiat, R. Y. Chiao. Dispersion cancellation in a measurement of the single-photon propagation velocity in glass. Phys. Rev. Lett., 68, 2421-2424(1992).

    [22] T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, Y. H. Shih. Can two-photon interference be considered the interference of two photons?. Phys. Rev. Lett., 77, 1917-1920(1996).

    [23] D. V. Strekalov, T. B. Pittman, Y. H. Shih. What we can learn about single photons in a two-photon interference experiment. Phys. Rev. A, 57, 567-570(1998).

    [24] K. J. Blow, R. Loudon, S. J. D. Phoenix. Continuum fields in quantum optics. Phys. Rev. A, 42, 4102-4114(1990).

    [25] K. Molmer, Y. Castin, J. Dalibard. Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B., 10, 524-538(1993).

    [26] W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, X. M. Xie. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron., 60, 120314(2017).

    [27] X. X. Ma, X. Y. Li, L. Cui, X. S. Guo, L. Yang. Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing. Phys. Rev. A, 84, 023829(2011).

    [28] X. X. Ma, L. Cui, X. Y. Li. Hong-Ou-Mandel interference between independent sources of heralded ultrafast single photons: influence of chirp. J. Opt. Soc. Am. B, 32, 946-954(2015).

    [29] J. G. Rarity, P. R. Tapster, E. Jakeman. Two-photon interference in a Mach-Zehnder interferometer. Phys. Rev. Lett., 65, 1348-1351(1990).

    [30] B. Liu, Z. Y. Ou. Engineering multiphoton entangled states by quantum interference. Phys. Rev. A, 74, 035802(2006).

    [31] I. Afek, O. Ambar, Y. Silberberg. High-NOON states by mixing quantum and classical light. Science, 328, 879-881(2010).

    [32] L. A. Rozema, J. D. Bateman, D. H. Mahler, R. Okamoto, A. Feizpour, A. Hayat, A. M. Steinberg. Scalable spatial superresolution using entangled photons. Phys. Rev. Lett., 112, 223602(2014).

    [33] J. S. Sidhu, P. Kok. Quantum metrology of spatial deformation using arrays of classical and quantum light emitters. Phys. Rev. A, 95, 063829(2016).

    [34] Y. Miyamoto, T. Kuga, M. Baba, M. Matsuoka. Measurement of ultrafast optical pulses with two-photon interference. Opt. Lett., 18, 900-902(1993).

    [35] M. Maier, W. Kaiser, J. A. Giordmaine. Intense light bursts in the stimulated Raman effect. Phys. Rev. Lett., 17, 1275-1277(1966).

    [36] T. Legero, T. Wilk, A. Kuhn, G. Rempe. Time-resolved two-photon quantum interference. Appl. Phys. B, 77, 797-802(2003).

    [37] T. Legero, T. Wilk, M. Hennrich, G. Rempe, A. Kuhn. Quantum beat of two single photons. Phys. Rev. Lett., 93, 070503(2004).

    [38] Y. S. Kim, O. Slattery, P. S. Kuo, X. Tang. Conditions for two-photon interference with coherent pulses. Phys. Rev. A, 87, 063843(2013).

    [39] L. G. Cohen, C. Lin. Pulse delay measurements in the zero material dispersion wavelength region for optical fibers. Appl. Opt., 16, 3136-3139(1977).

    [40] T. Ozeki, A. Watanabe. Measurements of wavelength dependence of group delay in a multimode silica fiber. Appl. Phys. Lett., 28, 382-383(1976).

    [41] S. Diddams, J. C. Diels. Dispersion measurements with white-light interferometry. J. Opt. Soc. Am. B, 13, 1120-1129(1996).

    [42] L. G. Cohen. Comparison of single-mode fiber dispersion measurement techniques. J. Lightwave Technol., 3, 958-966(1985).

    [43] Z. Y. Ou, E. C. Gage, B. E. Magill, L. Mandel. Fourth-order interference technique for determining the coherence time of a light beam. J. Opt. Soc. Am. B, 6, 100-103(1989).

    [44] D. G. Im, Y. Kim, Y. H. Kim. Dispersion cancellation in a quantum interferometer with independent single photons. Opt. Express, 29, 2348-2363(2021).

    Yun-Ru Fan, Chen-Zhi Yuan, Rui-Ming Zhang, Si Shen, Peng Wu, He-Qing Wang, Hao Li, Guang-Wei Deng, Hai-Zhi Song, Li-Xing You, Zhen Wang, You Wang, Guang-Can Guo, Qiang Zhou. Effect of dispersion on indistinguishability between single-photon wave-packets[J]. Photonics Research, 2021, 9(6): 1134
    Download Citation