• Journal of Inorganic Materials
  • Vol. 37, Issue 6, 617 (2022)
Ziqin WEI1、2, Xiang XIA2, Qin LI2, Guorong LI2, and Jiang CHANG1、2、*
Author Affiliations
  • 11. College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
  • 22. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.15541/jim20210549 Cite this Article
    Ziqin WEI, Xiang XIA, Qin LI, Guorong LI, Jiang CHANG. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics[J]. Journal of Inorganic Materials, 2022, 37(6): 617 Copy Citation Text show less
    References

    [1] H ANTALYA, B JOHANNA, L E RUSTOM et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 143-162(2018).

    [2] D C LOBB, B R DEGEORGE, A B CHHABRA. Bone graft substitutes: current concepts and future expectations. The Journal of Hand Surgery, 497-505(2019).

    [3] Y MAAZOUZ, G CHIZZOLA, N DOBELIN et al. Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials, 120912(2021).

    [4] L L HENCH, J M POLAK. Third-generation biomedical materials. Science, 1014-1017(2002).

    [5] E FUKADA, I YASUDA. On the piezoelectric effect of bone. Journal of the Physical Society of Japan, 1158-1162(1957).

    [6] C A L BASSETT, R O BECKER. Generation of electric potentials by bone in response to mechanical stress. Science, 1063-1064(1962).

    [7] E FUKADA, I YASUDA. Piezoelectric effects in collagen. Japanese Journal of Applied Physics, 117-121(1964).

    [8] J B PARK, A F V RECUM, G H KENNER et al. Piezoelectric ceramic implants-a feasibility study. Journal of Biomedical Materials Research, 269-277(1980).

    [9] M ATTILIO, B JONATHAN, D V GIUSEPPE et al. Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Applied Materials & Interfaces, 25574-25579(2015).

    [10] C BUSUIOC, E OLARET, I C STANCU et al. Electrospun fibre webs templated synthesis of mineral scaffolds based on calcium phosphates and barium titanate. Nanomaterials, 772(2020).

    [11] D KHARE, B BASU, A K DUBEY. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials, 120280(2020).

    [12] S WEINER, L ADDADI. Crystallization pathways in biomineralization. Annual Review of Materials Research, 21-40(2011).

    [13] N REZNIKOV, J A M STEELE, P FRATZL et al. A materials science vision of extracellular matrix mineralization. Nature Reviews Materials, 16041(2016).

    [14] C T WU, J CHANG. Silicate bioceramics for bone tissue regeneration. Journal of Inorganic Materials, 29-39(2013).

    [15] K L LIN, J CHANG, Z WANG. Fabrication and the characterisation of the bioactivity and degradability of macroporous calcium silicate bioceramics in vitro. Journal of Inorganic Materials, 692-698(2005).

    [16] X Y LIU, C X DING, Z Y WANG. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials, 2007-2012(2001).

    [17] X WANG, Y ZHOU, L XIA et al. Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity. Colloids Surf. Biointerfaces, 358-366(2015).

    [18] S G WANG, Y C XU, J ZHOU et al. In vitro degradation and surface bioactivity of iron-matrix composites containing silicate- based bioceramic. Bioactive Materials, 10-18(2017).

    [19] T KOKUBO, H TAKADAMA. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 2907-2915(2006).

    [20] H T LI, B P ZHANG, J B WEN et al. Influences of sintering temperature on structure and properties of Cu-doped lead-free LNKN ceramics. Journal of Functional Materials, 931-934(2011).

    [21] S ZHANG, F YU, D J GREEN. Piezoelectric materials for high temperature sensors. Journal of the American Ceramic Society, 3153-3170(2011).

    [22] Y TANG, C WU, Z WU et al. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Scientific Reports, 43360(2017).

    [23] D KIM, S A HAN, J H KIM et al. Biomolecular piezoelectric materials: from amino acids to living tissues. Advanced Materials, 1906(2020).

    [24] F R BAXTER, I G TURNER, C R BOWEN et al. The structure and properties of electroceramics for bone graft substitution. Key Engineering Materials, 99-102(2008).

    [25] H MAEDA, K TSUDA, E FUKADA. Dependence on temperature and hydration of piezoelectric, dielectric and elastic-constants of bone. Japanese Journal of Applied Physics, 2333-2336(1976).

    [26] E SALAHINEJAD, M J BAGHJEGHAZ. Structure, biomineralization and biodegradation of Ca-Mg oxyfluorosilicates synthesized by inorganic salt coprecipitation. Ceramics International, 10299-10306(2017).

    Ziqin WEI, Xiang XIA, Qin LI, Guorong LI, Jiang CHANG. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics[J]. Journal of Inorganic Materials, 2022, 37(6): 617
    Download Citation