• Journal of Innovative Optical Health Sciences
  • Vol. 13, Issue 2, 2030004 (2020)
A. Abdurashitov1、2、*, V. Tuchin1、2、3, and O. Semyachkina-Glushkovskaya1
Author Affiliations
  • 1Saratov State University, Saratov 410012, Russian Federation
  • 2Tomsk State University, Tomsk 634050, Russian Federation
  • 3Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov 410028, Russian Federation
  • show less
    DOI: 10.1142/s1793545820300049 Cite this Article
    A. Abdurashitov, V. Tuchin, O. Semyachkina-Glushkovskaya. Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for in vivo monitoring of cerebral fluid dynamics[J]. Journal of Innovative Optical Health Sciences, 2020, 13(2): 2030004 Copy Citation Text show less
    References

    [1] Q. T. Ostrom, D. J. Cote, M. Ascha, C. Kruchko, J. S. Barnholtz-Sloan, ”Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014," JAMA Oncol. 4(9), 1254–1262 (2018).

    [2] F. Jason, ”Pediatric high grade glioma: A review and update on tumor clinical characteristics and biology," Front Oncol. 2, 105 (2012).

    [3] A. Seker, M. M. Ozek, ”Congenital glioblastoma multiforme. Case report and review of the literature," J. Neurosurg. 105, 473–479 (2006).

    [4] L. C. Hou, S. R. Bababeygy, V. Sarkissian, P. G. Fisher, H. Vogel, P. Barnes, S. L. Huhn, ”Congenital glioblastoma multiforme: Case report and review of the literature," Pediatr. Neurosurg. 44, 304–312 (2008).

    [5] G. M. Milano, C. Cerri, V. Ferruzzi, I. Capolsini, E. Mastrodicasa, L. Genitori, F. Aversa, ”Congenital glioblastoma," Pediatr. Blood Cancer 53, 124–126 (2009).

    [6] A. Broniscer, S. J. Baker, A. N. West, M. M. Fraser, E. Proko, M. Kocak, J. Dalton, G. P. Zambetti, D. W. Ellison, L. E. Kun, A. Gajjar, R. J. Gilbertson, C. E. Fuller, ”Clinical and molecular characteristics of malignant transformation of low-grade glioma in children," J. Clin. Oncol. 25, 682–689 (2007).

    [7] D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet, B. W. Scheithauer, P. Kleihues, ”The 2007 WHO classification of tumours of the central nervous system," Acta Neuropathol. 114, 97–109 (2007).

    [8] R. Stupp, P. Dietrich, S. Kraljevic, A. Pica, I. Maillard, P. Maeder et al., ”Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide," J. Clin. Oncol. 20(5), 1375–1382 (2002).

    [9] P. A. Valdes, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan et al., ”Quantitative fluorescence in intracranial tumor: Implications for ALA-induced PpIX as an intraoperative biomarker," J. Neurosurg. 115(1), 11–17 (2011), Epub 2011/03/29.

    [10] W. Stummer, M. Van den Bent, M. Westphal, ”Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: New arguments in an old discussion," Acta Neurochirurgica 153(6), 1211–1218 (2011).

    [11] W. Stummer, H. Stepp, O. D. Wiestler, U. Pichlmeier, ”Randomized, prospective double-blinded study comparing 3 different doses of 5-aminolevulinic acid for fluorescence-guided resections of malignant gliomas," Neurosurgery 81(2), 230–239 (2017).

    [12] R. Crowley, N. Pouratian, J. Sheehan, ”Gamma knife surgery for glioblastoma multiforme," Neurosurg. Focus 20(4), E17 (2006).

    [13] D. Amelio, S. Lorentini, M. Scharwz, M. Amichetti, ”Intensity-modulated radiation therapy in newly diagnosed glioblastoma: A systematic review on clinical and technical issues," Radiother. Oncol. 97(3), 361–369 (2010).

    [14] H. Stepp, T. Beck, T. Pongraz, T. Meinel, F. W. Kreth, J. Ch. Tonn, W. Stummer, ”ALA and malignant glioma: Fluorescence-guided resection and photodynamic treatment," J. Environ. Pathol. Toxicol. Oncol. 21, 157–164 (2007).

    [15] Z. Huang, L. Cheng, O. Guryanova, Q. Wu, S. Bao, ”Cancer stem cells in glioblastoma-molecular signaling and therapeutic targeting," Protein Cell 1(7), 638–655 (2010).

    [16] C. B. Wilson, ”Glioblastoma: The past, the present, and the future," Clin. Neurosurg. 38, 32–48 (1992).

    [17] N. R. Finsen, Phototherapy, Edward Arnold, London (1901).

    [18] O. Raab, ”Untersuchungen über die Wirkung fluorescierender Stoffe," Z. Biol. 39, 16 (1899).

    [19] H. von Tappeiner, A. Jodlbauer, ”über Wirkung der photodynamischen fluorieszierenden Stoffe auf Protozoan und Enzyme," Dtsch. Arch. Klin. Med. 80, 427–487 (1904).

    [20] F. Meyer-Betz, ”Untersuchungen über die biologische photodynamische Wirkung des Hamatoporphyrins und andere Derivate des Blut- und Gallenfarbstoffs," Dtsch. Arch. Klin. Med. 112, 476–450 (1913).

    [21] T. J. Dougherty, ”An update on photodynamic therapy applications," J. Clin. Laser Med. Surg. 20, 3–7 (2002).

    [22] B. C. Wilson, M. S. Patterson, ”The physics, biophysics and technology of photodynamic therapy," Phys. Med. Biol. 53, R61–R109 (2008).

    [23] A. A. Krasnovsky et al., Singlet oxygen and primary mechanisms of photodynamic therapy and photodynamic diseases, Photodynamic Therapy at the Cellular Level, A. B. Uzdensky, Ed., pp. 17–62, Research Signpost, Trivandrum (2007).

    [24] A. B. Uzdensky et al., ”Photodynamic therapy: A review of applications in neurooncology and neuropathology," J. Biomed. Opt. 20(6), 061108 (2015).

    [25] T. S. Zavadskaya, ”Photodynamic therapy in the treatment of glioma," Exp. Oncol. 37 234–241 (2015).

    [26] G. Shafirstein, D. Bellnier, E. Oakley, S. Hamilton, M. Potasek, K. Beeson, E. Parilov, ”Interstitial photodynamic therapy-a focused review," Cancers 9, 12 (2017), doi: 10.3390/cancers 9020012.

    [27] H. Kostron, T. Hasan, Photodynamic Medicine from Bench to Clinic, The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK (2016).

    [28] A. P. Castano, T. N. Demidova, M. R. Hamblin, ”Mechanisms in photodynamic therapy: Part onephotosensitizers, photochemistry and cellular localization," Photodiagn. Photodyn. Ther. 1, 279–293 (2004).

    [29] M. Hennessy, M. R. Hamblin, ”Photobiomodulation and the brain: A new paradigm," J. Optics 19(1), 013–003 (2016).

    [30] M. S. Eljamel, C. Goodman, H. Moseley, ”ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: A single centre phase III randomised controlled trial," Lasers Med. Sci. 23, 361–367 (2008).

    [31] P. J. Muller, B. C. Wilson, ”Photodynamic therapy of brain tumors-a work in progress," Lasers Surg. Med. 38, 384–389 (2006).

    [32] Y. Muragaki, J. Akimoto, T. Maruyama, H. Iseki, S. Ikuta, M. Nitta, K. Maebayashi, T. Saito, Y. Okada, S. Kaneko, A. Matsumura, T. Kuroiwa, K. Karasawa, Y. Nakazato, T. Kayama, ”Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors," J. Neurosurg. 119, 845–852 (2013).

    [33] D. Bechet, S. R. Mordon, F. Guillemin, M. A. Barberi-Heyob, ”Photodynamic therapy of malignant brain tumors: A complementary approach to conventional therapies," Cancer Treat. Rev. 40, 229–241 (2014).

    [34] B. J. Quirk, G. Brandal, S. Donlon, J. C. Vera, T. S. Mang, A. B. Foy, S. M. Lew, A. W. Girotti, S. Jogal, P. S. LaViolette, J. M. Connelly, ”Whelan HT. Photodynamic therapy (PDT) for malignant brain tumors-where do we stand?," Photodiagn. Photodyn. Ther. 12, 530–544 (2015).

    [35] L. E. Gasper, B. J. Fisher, D. R. Macdonald, D. V. LeBer, E. C. Halperin, S. C. Schold Jr., J. G. Cairncross, ”Supratentorial malignant glioma: Patterns of recurrence and implications for external beam local treatment," Int. J. Radiai. Oncol. Biol. Phys. 24, 55–57 (1992).

    [36] C. Perria, T. Capuzzo, G. Cavagnaro, R. Datti, N. Francaviglia, C. Rivano, V. E. Tercero, ”Fast attempts at the photodynamic treatment of human gliomas," J. Neurosurg. Sci. 24, 119–129 (1980).

    [37] S. Kaneko, ”Safety guidelines for diagnostic and therapeutic laser applications in the neurosurgical feld," Laser Ther. 21, 129–136 (2012).

    [38] S. S. Stylli, A. H. Kaye, L. MacGregor, M. Howes, P. Rajendra, ”Photodynamic therapy of high grade glioma-long term survival," J. Clin. Neurosci. 12, 389–398 (2005).

    [39] P. J. Muller, B. C. Wilson, ”Photodynamic therapy of brain tumor-a work in progress," Laser Surg. Med. 38, 384–389 (2006).

    [40] H. Kostron, T. Fiegele, E. Akatuna, ”Combination of FoSCANr mediated fluorescence guided resection and photodynamic treatment as a new concept for malignant brain tumors," Med. Laser Appl. 21, 185–290 (2006).

    [41] S. Eljamel, ”Photodynamic applications in brain tumors: A comprehensive review of the literature," Photodiagn. Photodyn. Ther. 7, 76–85 (2010).

    [42] M. S. Mathews, ”Cerebral edema following photodynamic therapy using endogenous and exogenous photosensitizers in normal brain," Lasers Surg. Med. 43, 892–900 (2011).

    [43] S. S. Stylli, ”Photodynamic therapy of cerebral glioma-A review Part I-A biological basis," J. Clin. Neurosci. 13, 615–625 (2006).

    [44] H. Hirschberg, ”Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy," Lasers Surg. Med. 40, 535–542 (2008).

    [45] S. J. Madsen, ”Site-specific opening of the bloodbrain barrier," J. Biophoton. 3, 356–367 (2010).

    [46] S. J. Madsen, ”Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption," Lasers Surg. Med. 45, 524–532 (2013).

    [47] S. J. Madsen, ”Nanoparticle-loaded macrophagemediated photothermal therapy: Potential for glioma treatment," Lasers Med. Sci. 4, 1357–1365 (2015).

    [48] C. Zhang, W. Feng, Y. Li, J. Kürths, T. Yu, O. Semyachkina-Glushkovskaya, D. Zhu, ”Age differences in photodynamic opening of blood-brain barrier through optical clearing skull window in mice," Lasers Surg. Med. (2019), doi: 10.1002/lsm.23075.

    [49] Ch. Zhang, W. Feng, E. Vodovosova, D. Tretiakova, I. Boldyrev, Yu. Li, Ju. Kurths, T. Yu, O. Semyachkina-Glushkovskaya, D. Zhu, ”Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window," Biomed. Opt. Express 9, 4850–4862 (2018).

    [50] O. Semyachkina-Glushkovskaya, J. Kurths, E. Borisova, S. Sokolovsky, N. Mantareva, I. Angelov, A. Shirokov, N. Navolokin, N. Shushunova, A. Khorovodov, M. Ulanova, M. Sagatova, I. Ahranovich, O. Sindeeva, A. Gekalyuk, A. Bordova, E. Rafailov, ”Photodynamic opening of blood-brain barrier," Biomed. Opt. Express 8(11) (2017) https://doi.org/10.1364/BOE.8.005040.

    [51] N. J. Abbott, ”Astrocyte-endothelial interactions at the blood–brain barrier," Nat. Rev. Neurosci. 7, 41–53 (2006).

    [52] P. Balabh, ”The blood-brain barrier: An overview structure, regulation, and clinical implication," Neurobiol. Dis. 16, 1–13 (2004).

    [53] H. Wolburg, ”Tight junctions of the blood–brain barrier: Development, composition and regulation," Vascul. Pharmacol. 38, 323–337 (2002).

    [54] K. Matter, ”Signalling to and from tight junctions," Nat. Rev. Mol. Cell Biol. 4, 225–236 (2003).

    [55] H. Wolburg, ”Brain endothelial cells and the glio–vascular complex," Cell Tissue Res. 335, 75–96 (2009).

    [56] B. T. Hawkins, ”The blood–brain barrier/neurovascular unit in health and disease," Pharmacol. Rev. 57, 173–185 (2005).

    [57] N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, D. J. Begley, ”Structure and function of the blood-brain barrier," Neurobiol. Dis. 37, 13–25 (2010).

    [58] W. M. Pardridge, ”Molecular Trojan horses for blood-brain barrier drug delivery," Curr. Opin. Pharmacol. 6, 494–500 (2006).

    [59] D. Silberberg, N. P. Anand, K. Michels, R. N. Kalaria, ”Brain and other nervous system disorders across the lifespan-global challenges and opportunities," Nature 527, 151–154 (2015).

    [60] M. M. Patel, B. M. Patel, ”Crossing the Blood-Brain Barrier: Recent Advances in Drug Delivery to the Brain," CNS Drugs 31, 109–133 (2017).

    [61] S. Mitragotri, ”Devices for overcoming biological barriers: The use of physical forces to disrupt the barriers," Adv. Drug Deliv. Rev. 65, 100–103 (2013).

    [62] D. S. Hersh, A. S. Wadajkar, N. B. Roberts, J. G. Perez, N. P. Connolly, V. Frenkel, J. A. Winkles, G. F. Woodworth, A. J. Kim, ”Evolving drug delivery strategies to overcome the blood brain barrier," Curr. Pharm. Design 22, 1177–1193 (2016).

    [63] F. Celine, ”Innovations of photodynamic therapy for brain tumors: Potential of multifunctional nanoparticles" J. CarcinogeneMutagene 8, 1–7 (2012).

    [64] A. J. Trinidad, ”Combined concurrent photodynamic and gold nanoshell loaded macrophagemediated photothermal therapies: An in vitro study on squamous cell head and neck carcinoma," Lasers Surg Med. 4, 310–318 (2014).

    [65] V. H. Fingar, ”Vascular effects of photodynamic therapy," J. Clin. Laser Med. Sur. 14(5), 323–328 (1996).

    [66] S. S. Hu, H. B. Cheng, Y. R. Zheng, R. Y. Zhang, W. Yue, H. Zhang, ”Effects of photodynamic therapy on the ultrastructure of glioma cells," Biomed. Environ. Sci. 20(4), 269–273 (2007).

    [67] L. A. Sporn, T. H. Foster, ”Photofrin and light induces microtubule depolymerization in cultured human endothelial cells," Cancer Res. 52(12), 3443–3448 (1992).

    [68] P. Agostinis, K. Berg, K. A. Cengel et al., ”Photodynamic therapy of cancer: An update," Ca-a Cancer J. Clin. 61(4), 250–281 (2011).

    [69] Y. Kusama, M. Bernier, D. J. Hearse, ”Singlet oxygen-induced arrhythmias. Dose- and lightresponse studies for photoactivation of rose bengal in the rat heart," Circulation 80(5), 1432–1448 (1989).

    [70] G. Vandeplassche, M. Bernier, F. Thone, M. Borgers, Y. Kusama, D. J. Hearse, ”Singlet oxygen and myocardial injury: Ultrastructural, cytochemical and electrocardiographic consequences of photoactivation of rose Bengal," J. Mol. Cell Cardiol. 22(3), 287–301 (1990).

    [71] F. Yoshino, H. Shoji, M. C. I. Lee, ”Vascular effects of singlet oxygen (O-1(2)) generated by photoexcitation on adrenergic neurotransmission in isolated rabbit mesenteric vein," Redox. Rep. 7(5):266–270 (2002).

    [72] M. R. Hara, J. J. Kovacs, E. J. Whalen, S. Rajagopal, R. T. Strachan, W. Grant, A. J. Towers, B. Williams, C. M. Lam, K. Xiao, S. K. Shenoy, S. G. Gregory, S. Ahn, D. R. Duckett, R. J. Lefkowitz, ”A stress response pathway regulates DNA damage through beta(2)-adrenoreceptors and betaarrestin-1," Nature, 477, 349–353 (2011).

    [73] R. J. Leftowitz, S. K. Shenoy, ”Transduction of receptor signals by beta-arrestins," Science, 308, 512–517 (2005).

    [74] J. K. Hebda, H. M. Leclair, S. Azzi, C. Roussel,M.G. Scott, N. Bidère, J. Gavard, ”The C-terminus region of β-arrestin1 modulates VE-cadherin expression and endothelial cell permeability," Cell Commun. Signal. 11, 1–7 (2013).

    [75] S. S. Hu, H. B. Cheng, Y. R. Zheng, R. Y. Zhang, W. Yue, H. Zhang, ”Effects of photodynamic therapy on the ultrastructure of glioma cells," Biomed. Environ. Sci. 20, 269–273 (2007).

    [76] H. Ito, H. Matsui, ”Mitochondrial reactive oxygen species and photodynamic therapy," Laser Ther. 25, 193–199 (2016).

    [77] H. Buzza, L. C. F. de Fraitas, L. T. Moriayama, R. Rosa, F. Bagnato, C. Kurachi, ”Vascular effects of photodynamic therapy with circumin in a chlorioallantoic membrane model," Int. J. Mol. Sci. 20(5), 1084 (2019).

    [78] J. W. Snyder, W. R. Greco, D. A. Bellnier, L. Vaughan, B. W. Henderson, ”Photodynamic therapy: A means to enhanced drug delivery to tumors," Cancer Res. 63, 8126–8131 (2003).

    [79] E. Debefve, B. Pegaz, J. P. Ballini, Y. N. Konan, H. Van den Bergh, ”Combination therapy using aspirin enhanced photodynamic selective drug delivery," Vasc. Pharmacol. 46, 171–180 (2007).

    [80] E. Debefve, B. Pegaz, H. van den Bergh, G. Wagnieres, N. Lange, J. P. Ballini, ”Video monitoring of neovessel occlusion induced by photodynamic therapy with verteporfin (Visudyne), in the CAM model," Angiogenesis. 2008, 235–243 (2008).

    [81] W. Stummer, C. Goetz, A. Hassan, D. V. M Heimann, O. Kempski, ”Kinetics of Photofrin II in perifocal brain edema," Neurosurgery. 33, 1075–1082 (1993).

    [82] C. Goetz, A. Hasan, W. Stummer, A. Heimann, O. Kempski, ”Experimental research photodynamic effects in perifocal, oedematous brain tissue," Acta Neurochir (Wien) 144(2), 173–179 (2002).

    [83] S. Ito, W. Rachinger, H. Stepp, H. J. Reulen, W. Stummer, ”Oedema formation in experimental photoirradiation therapy of brain tumours using 5-ALA," Acta Neurochir (Wien) 147(1), 57–65 (2005).

    [84] M. Westphal, ”5-aminolevulinic acid induced endogenous porphyrin fluorescence in 9L and C6 brain tumours and in the normal rat brain —Comment," Acta Neurochir 140(5), 512–513 (1998).

    [85] A. S. Filippidis, R. B. Carozza, H. L. Rekate, ”Aquaporins in brain edema and neuropathological conditions," Int. J. Mol. Sci. 18(1), 55 (2017).

    [86] S. Michinaga, Y. Koyama, ”Pathogenesis of brain edema and investigation into anti-edema drugs," Int. J. Mol. Sci. 16(5), 9949–9975 (2015).

    [87] H. F. Cserr, C. S. Patlak, ”Secretion and bulk flow of interstitial fluid," in Physiology and Pharmacology of the Blood-Brain Barrier, ed. M. W. B. Bradbury (Berlin: Springer-Verlag, 1992), pp. 245–261.

    [88] H. Davson, M. B. Segal, Physiology of the CSF and Blood-brain Barriers (Boca Raton: CRC Press, 1996).

    [89] M. W. Bradbury, ”Lymphatics and the central nervous system," in Trends Neuroscience (Cambridge: Cell Press, 1981), pp. 100–101.

    [90] M. W. B. Bradbury, R. J. Westrop, ”Factors influencing exit of substances from cerebrospinal-fluid into deep cervical lymph of the rabbit," J. Physiol. 339, 519–534 (1983).

    [91] S. Kida, A. Pantazis, R. O. Weller, ”CSF drains directly from the subarachnoid space into nasal lymphatics in the rat-anatomy, histology and immunological significance," Neuropathol. Appl. Neurobiol. 19, 480–488 (1993).

    [92] M. Johnston, C. Papaiconomou, ”Cerebrospinal fluid transport: A lymphatic perspective," News Physiol. Sci. 17, 227–230 (2002).

    [93] M. Johnston, A. Zakharov, C. Papaiconomou, G. Salmasi, D. Armstrong, ”Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species," Cerebrospinal Fluid Res. 1:2 (2004). doi: 10.1186/1743-8454-1-2.

    [94] N. J. Abbott, ”Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology," Neurochem. Int. 45, 545–552 (2004).

    [95] R. O. Weller, E. Djuanda, H.-Y. Yow, R. O. Carare, ”Lymphatic drainage of the brain and the pathophysiology of neurological disease," ActaNeuropathol. 117, 1–14 (2009).

    [96] L. Koh, A. Zakharov, M. Johnston, ”Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption?" Cerebrospinal Fluid Res. 2:6 (2005). doi: 10.1186/1743-8454-2-6.

    [97] H. F. Cserr, P. M. Knopf, ”Cervical lymphatics, the blood-brain barrier and the immureactivity of the brain: A new view," Immunol. Today. 13(12), 507–512 (1992).

    [98] M. Lohrberg, J. Wilting, ”The lymphatic vascular system of the mouse head," Cell Tissue Res. 366, 667–677 (2016), doi: 10.1007/s00441-016-2493-8. 99. W. His, ”UebereinperivaskulaeresKanalsystem in den nervoesen Central-Organen und ueberdessen Beziehungenzum Lymphsystem," Z. WissZool. 5, 127–141 (1865).

    [99] G. Schwalbe, ”Die Arachnoidalraum, einLymphraum und sein Zusammenhangmit den Perichorioidalraum," Zentralbl. Med. Wiss. 7, 465–467 (1869).

    [100] L. H. Weed, ”The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi," J. Med. Res. 31, 51–91 (1914).

    [101] J. F. Iliff, M. Wang, Y. Liao, B. A. Plogg, W. Peng, G. A. Gundersen, H. Benveniste, G. E. Vates, R. Deane, S. A. Goldman, E. A. Nagelhus, M. Nedergaard, ”A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid ," Sci. Transl. Med. 366, 667–677 (2012). doi: 10.1126/scitranslmed.3003748.

    [102] R. T. Jackson, J. Tigges, W. Arnold, ”Subarachnoid space of the CNS, nasal mucosa, and lymphatic system," Arch. Otolaryngol. 105, 180 (1979).

    [103] A. Aspelund, S. Antila, S. T. Proulx, T. V. Karlsen, S. Karaman, M. Detmar, H. Wiig, K. Alitalo, ”A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules," J. Exp. Med. 212, 991–999 (2015), doi: 10.1084/jem.20142290.

    [104] A. Louveau, I. Smirnov, T. J. Keyes, J. D. Eccles, S. J. Rouhani, J. D. Peske, N. C. Derecki, D. Castle, J. W. Mandell, K. S. Lee, T. H. Harris, J. Kipnis, ”Structural and functional features of central nervous system lymphatic vessels," Nature 523, 337–341 (2015), doi: 10.1038/nature14432.

    [105] O. Semyachkina-Glushkovskaya, A. Abdurashitov, A. Dubrovsky, D. Bragin, O. Bragina, N. Shushunova, G. Maslyakova, N. Navolokin, A. Bucharskaya, V. Tuchin, J. Kurths, ”Application of optical coherent tomography for in vivo monitoring of the meningeal lymphatic vessels during opening of blood-brain barrier: Mechanisms of brain clearing," J. Biomed. Opt. (2017), doi: 10.1117/1.JBO.22.12.121719.

    [106] O. Semyachkina-Glushkovskaya, V. Chehonin, E. Borisova, I. Fedosov, A. Namykin, A. Abdurashitov, A. Shirokov, B. Khlebtsov, Y. Lyubun, N. Navolokin, M. Ulanova, N. Shushunova, A. Khorovodov, I. Agranovich, A. Bodrova, M. Sagatova, A. Esmat, E. Shareef Saranceva, T. Iskra, M. Dvoryatkina, E. Zhinchenko, O. Sindeeva, V. Tuchin, J. Kurths, ”Photodynamic opening of the blood-brain barrier and pathways of brain clearing pathways," J. Biophoton. (2018), doi: 10.1002/jbio.201700287.

    [107] B. Mokri, ”The Monro-Kellie hypothesis: Applications in CSF volume depletion," Neurology. 56(12), 1746–1748 (2001).

    [108] L. Liu, K. Duff, ”A technique for serial collection of cerebrospinal fluid from the cisterna magna in mouse," JoVE. 21 (2008), doi: 10.3791/960.

    [109] O. Semyachkina-Glushkovskaya, J. Kurths, E. Borisova, S. Sokolovsky, N. Mantareva, I. Angelov, A. Shirokov, N. Navolokin, N. Shushunova, A. Khorovodov, M. Ulanova, M. Sagatova, I. Ahranovich, O. Sindeeva, A. Gekalyuk, A. Bordova, E. Rafailov, ”Photodynamic opening of blood-brain barrier," Biomed. Opt. Express. 8, 11 (2017), doi: 10.1364/BOE.8.005040.

    [110] P. Batuk, J. Fuxe, H. Hashizume, T. Romano, E. Lashnits, S. Butz, D. Vestweber, M. Corada, C. Molendinin, E. Dejana, ”Functionally specialized junctions between endothelial cells of lymphatic vessels," J. Exp. Med. 204, 2349–2362 (2004).

    [111] C. Kesler, S. Kiao, L. Munn, T. Padera, ”Lymphatic vessels in health and diseases," Wiley Interdiscip. Rev. Syst. Biol. Med. 5(1), 111–124 (2013). doi: 10.1002/wsbm.1201.

    [112] C. Greene, M. Campbell, ”Tight junction modulation of the blood brain barrier: CNS delivery of small molecules," Tissue Barriers. 4(1), e1138017 (2016). doi: 10.1080/21688370.2015. 1138017.

    [113] J. Scallan, S. Zawieja, J. Castorena-Gonzalez, M. Davis, ”Lymphatic pumping: Mechanics, mechanisms and malfunction," J. Physiol. 594, 5749–5768 (2016). doi: 10.1113/JP272088.

    [114] T. Ohhashi, R. Mizuno, F. Ikomi, Y. Kawai, ”Current topics of physiology and pharmacology in the lymphatic system," Pharmacol. Ther. 105, 165–188 (2005).

    [115] H. G. Bohlen, O. Y. Gasheva, D. C. Zawieja, ”Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping," Am. J. Physiol. Heart Circ. Physiol. 301, H1897–1906 (2011). doi: 10.1152/ajpheart.00260.2011.

    [116] J. Eisenhoffer, Z. Y. Yuan, M. G. Johnston, ”Evidence that the L-arginine pathway plays a role in the regulation of pumping activity in bovine mesenteric lymphatic vessels," Microvasc. Res. 50, 249–259 (1995).

    [117] O. Y. Gasheva, D. C. Zawieja, A. A. Gashev, ”Contraction-initiated NO-dependent lymphatic relaxation: A self-regulatory mechanism in rat thoracic duct," J. Physiol. 575, 821–832 (2006).

    [118] Y. Shirasawa, F. Ikomi, T. Ohhashi, ”Physiological roles of endogenous nitric oxide in lymphatic pump activity of rat mesentery in vivo," Am. J. Physiol. Gastrointest. Liver Physiol. 278, G551–556 (2000).

    [119] A. Koller, R. Mizuno, G. Kaley, ”Flow reduces the amplitude and increases the frequency of lymphatic vasomotion: Role of endothelial prostanoids," Am. J. Physiol. 277, R1683-1689 (1999).

    [120] S. Da Mesquita, A. Louveau, A. Vaccari, I. Smirnov, R. C. Cornelison, K. M. Kingsmore, C. Contarino, S. Onengut-Gumuscu, E. Farber, D. Raper, K. E. Viar, R. D. Powell, W. Baker, N. Dabhi, R. Bai, R. Cao, S. Hu, S. S. Rich, J. M. Munson, M. B. Lopes, C. C. Overall, S. T. Acton and J. Kipnis, ”Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease," Nature 560, 185–191 2018.

    [121] M. Absinta1, S.-K. Ha, G. Nair, P. Sati, N. J. Luciano, M. Palisoc, A. Louveau, K. A. Zaghloul, S. Pittaluga, J. Kipnis, D. S. Reich, ”Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI," eLife 6, e29738 (2017), doi: https://doi.org/10.7554/eLife.29738.

    [122] V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed., PM 254 (SPIE Press, Bellingham, WA, 2015), 988 p.

    [123] W. Drexler, J. G. Fujimoto (eds.), Optical Coherence Tomography: Technology and Applications, 2nd ed. (Springer International Publishing, Switzerland, 2015), 2571 p.

    [124] C. J. Liu, G. A. Shamsan, T. Akkin, D. J. Odde, ”Glioma cell migration dynamics in brain tissue assessed by multimodal optical imaging," Biophys. J. 117(7), 1179–1188 (2019).

    [125] Y. Fan, Y. Xia, X. Zhang, Y. Sun, J. Tang, L. Zhang, H. Liao, ”Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics," Biosci. Trends 12(1), 12–23 (2018).

    [126] R. M. Nolan, S. G. Adie, M. Marjanovic, E. J. Chaney, F. A. South, G. L. Monroy, D. G. Simpson, ”Intraoperative optical coherence tomography for assessing human lymph nodes for metastatic cancer," BMC Cancer 16(1), 144 (2016).

    [127] H. Ramakonar, B. C. Quirk, R. W. Kirk, J. Li, A. Jacques, C. R. Lind, R. A. McLaughlin, ”Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans," Sci. Adv. 4(12), eaav4992 (2018).

    [128] W. Drexler, J. G. Fujimoto (ed.), Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).

    [129] M. Hagen-Eggert, P. Koch, G. Hüttmann, ”Analysis of the signal fall-off in spectral domain optical coherence tomography systems," in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, Vol. 8213 (International Society for Optics and Photonics, 2012, February), p. 82131K.

    [130] A. Federici, A. Dubois, ”Full-field optical coherence microscopy with optimized ultrahigh spatial resolution," Opt. Lett. 40(22), 5347–5350 (2015).

    [131] L. Tong, Q. Wei, A. Wei, J. X. Cheng, ”Gold nanorods as contrast agents for biological imaging: Optical properties, surface conjugation and photothermal effects," Photochem. Photobiol. 85(1), 21–32 (2009).

    [132] O. Liba, E. D. SoRelle, D. Sen, A. de La Zerda, ”Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging," Sci. Rep. 6, 23337 (2016).

    [133] E. D. SoRelle, O. Liba, Z. Hussain, M. Gambhir, A. de la Zerda, ”Biofunctionalization of large gold nanorods realizes ultrahigh-sensitivity optical imaging agents," Langmuir 31(45), 12339–12347 (2015).

    [134] A. L. Oldenburg, M. N. Hansen, A. Wei, S. A. Boppart, ”Plasmon-resonant gold nanorods provide spectroscopic OCT contrast in excised human breast tumors," in Molecular Probes for Biomedical Applications II, Vol. 6867 (International Society for Optics and Photonics, 2008, February), p. 68670E.

    [135] C. L. Chen, R. K. Wang, ”Optical coherence tomography based angiography," Biomed. Opt. Express 8(2), 1056–1082 (2017).

    [136] A. Y. Shih et al., ”Polished and Reinforced Thinned-skull Window for the Mouse Brain," J. Visual. Exp. 61, e3742, 1–6 (2012).

    [137] https://www.healthline.com/health/burr-hole (accessed 08/12/2019).

    [138] A. N. Bashkatov et al., ”Optical clearing of human cranial bones," in Biophotonics: From Fundamental Principles to Health, Environment, Security & Defense Applications (Ottawa, Ontario, Canada, September 29–October 9, 2004).

    [139] V. V. Tuchin, Optical Clearing of Tissues and Blood, PM 154 (SPIE Press, Bellingham, WA, 2006).

    [140] E. A. Genina, A. N. Bashkatov, V. V. Tuchin, ”Optical Clearing of Cranial Bone," Adv. Opt. Technol. Article ID 267867, 8 (2008).

    [141] D. Zhu, K. V. Larin, Q. Luo, V. V. Tuchin, ”Recent progress in tissue optical clearing," Laser Photon. Rev. 7(5), 732–757 (2013), doi: 10.1002/lpor.201200056.

    [142] J. Wang, Y. Zhang, T. Xu, Q. Luo, D. Zhu, ”An innovative transparent cranial window based on skull optical clearing," Laser Phys. Lett. 9, 469–473 (2012).

    [143] Y.-J. Zhao et al., ”Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution," Light: Sci. Appl. 7, e17153 (2018), doi: 10.1038/lsa.2017.153.

    A. Abdurashitov, V. Tuchin, O. Semyachkina-Glushkovskaya. Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for in vivo monitoring of cerebral fluid dynamics[J]. Journal of Innovative Optical Health Sciences, 2020, 13(2): 2030004
    Download Citation