[1] SCROSATI B, GARCHE J. Lithium batteries: status, prospects and future[J]. Journal of Power Sources, 2419-2430(2010).
[2] MANTHIRAM A. An outlook on lithium ion battery technology[J]. ACS Central Science, 1063-1069(2017).
[3] YU T, KE B Y, LI H Y et al. Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries[J]. Materials Chemistry Frontiers, 4892-4911(2021).
[4] YE Z C, QIU L, YANG W et al. Recent progress of nickel-rich layered cathode materials for lithium-ion batteries[J]. Chemistry-A European Journal, 4249-4269(2021).
[5] KIM J, LEE H, CHA H et al. Prospect and reality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 1702028(2018).
[6] SUN Y K. High-capacity layered cathodes for next-generation electric vehicles[J]. ACS Energy Letters, 1042-1044(2019).
[7] GANNETT C N, MELECIO-ZAMBRANO L, THEIBAULT M J et al. Organic electrode materials for fast-rate, high-power battery applications[J]. Materials Reports: Energy, 100008(2021).
[8] PAN J X, YE Y J, ZHOU M Z et al. Improving the activity and stability of Ni-based electrodes for solid oxide cells through surface engineering: recent progress and future perspectives[J]. Materials Reports: Energy, 100025(2021).
[9] SUN Y K, MYUNG S T, PARK B C et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 320-324(2009).
[10] WANG X X, DING Y L, DENG Y P et al. Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: promises and challenges[J]. Advanced Energy Materials, 1903864(2020).
[11] MANTHIRAM A, SONG B H, LI W D. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 125-139(2017).
[12] KIM U H, KUO L Y, KAGHAZCHI P et al. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries[J]. ACS Energy Letters, 576-582(2019).
[13] RYU H H, PARK K J, YOON D R et al. Li[Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability[J]. Advanced Energy Materials, 1902698(2019).
[14] LIU L H, LI M C, CHU L H et al. Layered ternary metal oxides: performance degradation mechanisms as cathodes, and design strategies for high-performance batteries[J]. Progress in Materials Science(2020).
[15] HOU P Y, YIN J M, DING M et al. Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: advances and perspectives[J]. Small, 1701802(2017).
[16] NOH H J, YOUN S, YOON C S et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 121-130(2013).
[17] GUAN P Y, ZHOU L, YU Z L et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 220-235(2020).
[18] TAN X R, ZHANG M L, LI J et al. Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials: a short review[J]. Ceramics International, 21888-21901(2020).
[19] HERZOG M J, GAUQUELIN N, ESKEN D et al. Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries[J]. Energy Technology, 2100028(2021).
[20] ZHAO S Y, ZHU Y T, QIAN Y C et al. Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery[J]. Materials Letters(2020).
[21] ZHOU P F, ZHANG Z, MENG H J et al. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries[J]. Nanoscale, 19263-19269(2016).
[22] HO V C, JEONG S, YIM T et al. Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries[J]. Journal of Power Sources(2020).
[23] HUANG W, ZHUANG W D, LI N et al. Nanoscale Y-doped ZrO2 modified LiNi0.88Co0.09Al0.03O2 cathode material with enhanced electrochemical properties for lithium-ion batteries[J]. Solid State Ionics(2019).
[24] XIAO Y H, MIARA L J, WANG Y et al. Computational screening of cathode coatings for solid-state batteries[J]. Joule, 1252-1275(2019).
[25] MIN K, PARK K, PARK S Y et al. Improved electrochemical properties of LiNi0.91Co0.06Mn0.03O2 cathode material via Li-reactive coating with metal phosphates[J]. Scientific Reports, 7151(2017).
[26] JAMIL S, WANG G, YANG L et al. Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification[J]. Journal of Materials Chemistry A, 21306-21316(2020).
[27] HU G R, DENG X R, PENG Z D et al. Comparison of AlPO4- and Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode materials for Li-ion battery[J]. Electrochimica Acta, 2567-2573(2008).
[28] YAN P F, ZHENG J M, LIU J et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nature Energy, 600-605(2018).
[29] FENG Z, RAJAGOPALAN R, SUN D et al. In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery[J]. Chemical Engineering Journal(2020).
[30] JO C H, JO J H, YASHIRO H et al. Bioinspired surface layer for the cathode material of high-energy-density sodium-ion batteries[J]. Advanced Energy Materials, 1702942(2018).
[31] WEIGEL T, SCHIPPER F, ERICKSON E M et al. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2cathode materials doped by various cations[J]. ACS Energy Letters, 508-516(2019).
[32] HU S K, CHENG G H, CHENG M Y et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries[J]. Journal of Power Sources, 564-569(2009).
[33] ZHOU P F, MENG H J, ZHANG Z et al. Stable layered Ni-rich LiNi0.9Co0.07Al0.03O2 microspheres assembled with nanoparticles as high-performance cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2724-2731(2017).
[34] YANG X Q, SUN X, MCBREEN J. New findings on the phase transitions in Li1-xNiO2: in situ synchrotron X-ray diffraction studies[J]. Electrochemistry Communications, 227-232(1999).
[35] DUAN J G, HU G R, CAO Y B et al. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2via Al gradient doping[J]. Journal of Power Sources, 322-330(2016).
[36] LIANG H M, WANG Z X, GUO H J et al. Improvement in the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Li2ZrO3 coating[J]. Applied Surface Science, 1045-1053(2017).
[37] LI H Y, GUO S H, ZHOU H S. In-situ/operando characterization techniques in lithium-ion batteries and beyond[J]. Journal of Energy Chemistry, 191-211(2021).
[38] CROGUENNEC L, POUILLERIE C, MANSOUR A N et al. Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with ≤0.30)[J]. Journal of Materials Chemistry, 131-141(2001).
[39] CROGUENNEC L, POUILLERIE C, DELMAS C. NiO2obtained by electrochemical lithium deintercalation from lithium nickelate: structural modifications[J]. Journal of The Electrochemical Society, 1314(2000).