• Journal of Semiconductors
  • Vol. 43, Issue 12, 122102 (2022)
Qihang Xiong1, Weifu Cen2、*, Xingtong Wu1, and Cong Chen3
Author Affiliations
  • 1College of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
  • 2College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
  • 3College of Mechanical and Electrical Engineering, Guizhou Minzu University, Guiyang 550025, China
  • show less
    DOI: 10.1088/1674-4926/43/12/122102 Cite this Article
    Qihang Xiong, Weifu Cen, Xingtong Wu, Cong Chen. Effect of warpage on the electronic structure and optical properties of bilayer germanene[J]. Journal of Semiconductors, 2022, 43(12): 122102 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

    [2] A Kara, H Enriquez, A P Seitsonen et al. A review on silicene — New candidate for electronics. Surf Sci Rep, 67, 1(2012).

    [3] S Cahangirov, M Topsakal, E Aktürk et al. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett, 102, 236804(2009).

    [4] H Behera, G Mukhopadhyay. First-principles study of structural and electronic properties of germanene. AIP Conf Proc, 1349, 823(2011).

    [5] P Miro, M Audiffred, T Heine. An atlas of two-dimensional materials. Chem Soc Rev, 43, 6537(2014).

    [6] T P Kaloni. Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms. J Phys Chem C, 118, 25200(2014).

    [7] Y Hoshina, K Iwasaki, A Yamada et al. First-principles analysis of indirect-to-direct band gap transition of Ge under tensile strain. Jpn J Appl Phys, 48, 04C125(2009).

    [8] N Dhar, D Jana. Effect of beryllium doping and vacancy in band structure, magnetic and optical properties of free standing germanene. Curr Appl Phys, 17, 1589(2017).

    [9] Z Y Ni, Q H Liu, K C Tang et al. Tunable bandgap in silicene and germanene. Nano Lett, 12, 113(2012).

    [10] D M Hoat, D K Nguyen, R Ponce-Pérez et al. Opening the germanene monolayer band gap using halogen atoms: An efficient approach studied by first-principles calculations. Appl Surf Sci, 551, 149318(2021).

    [11] D Coello-Fiallos, T Tene, J L Guayllas et al. DFT comparison of structural and electronic properties of graphene and germanene: Monolayer and bilayer systems. Mater Today Proc, 4, 6835(2017).

    [12] Z Qin, J Pan, S Lu et al. Direct evidence of Dirac signature in bilayer germanene islands on Cu (111). Adv Mater, 29, 1606046(2017).

    [13] E McCann, V I Fal'ko. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys Rev Lett, 96, 086805(2006).

    [14] E McCann. Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B, 74, 161403(2006).

    [15] E V Castro, K S Novoselov, S V Morozov et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys Rev Lett, 99, 216802(2007).

    [16] J Nilsson, A H Castro Neto. Impurities in a biased graphene bilayer. Phys Rev Lett, 98, 126801(2007).

    [17] M Aoki, H Amawashi. Dependence of band structures on stacking and field in layered graphene. Solid State Commun, 142, 123(2007).

    [18] P Solís-Fernández, S Okada, T Sato et al. Gate-tunable Dirac point of molecular doped graphene. ACS Nano, 10, 2930(2016).

    [19] N M R Peres. The electronic properties of graphene and its bilayer. Vacuum, 83, 1248(2009).

    [20] J L Mañes, F Guinea, M A H Vozmediano. Existence and topological stability of Fermi points in multilayered graphene. Phys Rev B, 75, 155424(2007).

    [21] H Wang, Q X Zhou, W W Ju et al. Effect of vacancy defect and dopants on the sensitivity of germanene to H 2CO. Phys E, 142, 115268(2022).

    [22] M A B Hamid, K T Chan, C H Raymond Ooi et al. Structural stability and electronic properties of graphene/germanene heterobilayer. Results Phys, 28, 104545(2021).

    [23] S S Raya, A S Ansari, B Shong. Adsorption of gas molecules on graphene, silicene, and germanene: A comparative first-principles study. Surf Interfaces, 24, 101054(2021).

    [24] K Zhang, D Sciacca, M C Hanf et al. Structure of germanene/Al(111): A two-layer surface alloy. J Phys Chem C, 125, 24702(2021).

    [25] X Si, W H She, Q Xu et al. First-principles density functional theory study of modified germanene-based electrode materials. Materials, 15, 103(2021).

    [26] G Liu, W W Luo, X Wang et al. Tuning the electronic properties of germanene by molecular adsorption and under an external electric field. J Mater Chem C, 6, 5937(2018).

    [27] P T Huong, D Muoi, H V Phuc et al. Low-energy bands, optical properties, and spin/valley-Hall conductivity of silicene and germanene. J Mater Sci, 55, 14848(2020).

    [28] R Chegel, S Behzad. Tunable Electronic, Optical, and Thermal Properties of two-dimensional Germanene via an external electric field. Sci Rep, 10, 704(2020).

    [29] V Kazemlou, A Phirouznia. Influence of compression strains on photon absorption of silicene and germanene. Superlattices Microstruct, 128, 23(2019).

    [30] M D Segall, P J D Lindan, M J Probert et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys: Condens Matter, 14, 2717(2002).

    [31] T H Fischer, A Jan. General methods for geometry and wave function optimization. J Phys Chem, 96, 9768(1992).

    Qihang Xiong, Weifu Cen, Xingtong Wu, Cong Chen. Effect of warpage on the electronic structure and optical properties of bilayer germanene[J]. Journal of Semiconductors, 2022, 43(12): 122102
    Download Citation