• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11413 (2018)
Sun Rujian, Zhu Ying, Li Liuhe, Guo Wei*, and Peng Peng
Author Affiliations
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/LOP55.011413 Cite this Article Set citation alerts
    Sun Rujian, Zhu Ying, Li Liuhe, Guo Wei, Peng Peng. Effect of Laser Shock Peening on Microstructure and Residual Stress of Wire-Arc Additive Manufactured 2319 Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11413 Copy Citation Text show less
    References

    [1] Heinz A, Haszler A, Keidel C et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science & Engineering A, 280, 102-107(2000). http://www.sciencedirect.com/science/article/pii/S0921509399006747

    [2] Zhang R. Research on the aluminum alloy arc additive manufacturing (3D printing) technology and process based on the CMT[D]. Nanjing: Nanjing University of Science & Technology(2016).

    [3] Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 42, 1-4(2013).

    [4] Szost B A, Terzi S, Martina F et al. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials & Design, 89, 559-567(2016). http://www.sciencedirect.com/science/article/pii/S0264127515305268

    [5] Williams S W, Martina F, Addison A C et al[J]. Wire + arc additive manufacturing Materials Science & Technology, 2015, 641-647.

    [6] Cong B Q, Ding J L. Influence of CMT process on porosity of wire arc additive manufactured Al-Cu alloy[J]. Rare Metal Materials and Engineering, 43, 3149-3153(2014).

    [7] Cong B Q, Ding J L, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy[J]. International Journal of Advanced Manufacturing Technology, 76, 1593-1606(2015).

    [8] Moat R J, Pinkerton A J, Li L et al. Residual stresses in laser direct metal deposited Waspaloy[J]. Materials Science & Engineering A, 528, 2288-2298(2011). http://www.sciencedirect.com/science/article/pii/S0921509310014036

    [9] Colegrove P A, Coules H E, Fairman J et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 213, 1782-1791(2013). http://www.sciencedirect.com/science/article/pii/S0924013613001416

    [10] Montross C S, Wei T, Ye L et al. Laser shock processing and its effects on microstructure and properties of metal alloys: A review[J]. International Journal of Fatigue, 24, 1021-1036(2002).

    [11] Liao Y L, Ye C, Cheng G J. A review: Warm laser shock peening and related laser processing technique[J]. Optics & Laser Technology, 78, 15-24(2016). http://www.sciencedirect.com/science/article/pii/S0030399215002583

    [12] Li W, Li Y H, He W F et al. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 45, 15-19(2008).

    [13] Qiao H C, Gao Y, Zhao J B et al. Research process of laser peening technology[J]. The Chinese Journal of Nonferrous Metals, 25, 1744-1755(2015).

    [14] Ding K, Ye L[M]. Laser shock peening: Performance and process simulation(2006).

    [15] Ye C H, Suslov S, Kim B J et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 59, 1014-1025(2011). http://www.sciencedirect.com/science/article/pii/S1359645410006944

    [16] Hu Y X, Yao Z Q, Hu J. 3-D FEM simulation of laser shock processing[J]. Surface & Coatings Technology, 201, 1426-1435(2006). http://www.sciencedirect.com/science/article/pii/s0257897206001575

    [17] Lu J Z, Luo K Y, Zhang Y K et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 58, 3984-3994(2010). http://www.sciencedirect.com/science/article/pii/S1359645410001710

    [18] Rubio-González C, Ocaña J L, Gomez-Rosas G et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J]. Materials Science & Engineering A, 386, 291-295(2004). http://www.sciencedirect.com/science/article/pii/S0921509304009372

    [19] Sun H, Zhu Y, Guo W et al. Effect of laser shock peening on residual stress and microstructure of TC17 titanium alloy[J]. Laser & Optoelectronics Progress, 54, 041405(2017).

    [20] Sun R J, Zhu Y, Guo W et al. Effect of laser shock processing on surface morphology and residual stress field of TC17 titanium alloy by FEM method[J]. Journal of Plasticity Engineering, 24, 187-193(2017).

    [21] Sun R J, Li L H, Zhu Y et al. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening[J]. Modelling and Simulation in Materials Science and Engineering, 25, 065016(2017). http://adsabs.harvard.edu/abs/2017MSMSE..25f5016S

    [22] Li Y Q, Meng C J, Wang X D et al. Corrosion resistance property of 316L stainless steel welding joints treated by laser shock peening[J]. Laser & Optoelectronics Progress, 54, 061402(2017).

    [23] Li D L, He W F, You X et al. Experimental research on improving fatigue strength of wounded TC4 titanium alloy by laser shock peening[J]. Chinese Journal of Lasers, 43, 0702006(2016).

    [24] Liu Y, Lu J Z, Luo K Y et al. Effect of laser shock processing on tensile property and fracture morphology of CP-Ti under elevated temperature condition[J]. Chinese Journal of Lasers, 43, 0902005(2016).

    [25] Kalentics N, Boillat E, Peyre P et al. 3D laser shock peening——A new method for the 3D control of residual stresses in selective laser melting[J]. Materials & Design, 130, 350-356(2017). http://www.sciencedirect.com/science/article/pii/S0264127517305658

    [26] Hall E O. Thedeformation and ageing of mild steel: II characteristics of the Lüders deformation[C]. Cambridge: Proceedings of the Physical Society, 64, 742(1951).

    [27] Petch N J. Thecleavage strength of polycrystals[J]. The Journal of the Iron and Steel Institute, 173, 25-27(1953). http://ci.nii.ac.jp/naid/10005741398

    [28] Armstrong R W. 60 years of Hall-Petch: Past to present nano-scale connections[J]. Materials Transactions, 55, 2-12(2014).

    [29] Lu J Z, Wu U, Sun G F et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts[J]. Acta Materialia, 127, 252-266(2017). http://www.sciencedirect.com/science/article/pii/S1359645417300629

    Sun Rujian, Zhu Ying, Li Liuhe, Guo Wei, Peng Peng. Effect of Laser Shock Peening on Microstructure and Residual Stress of Wire-Arc Additive Manufactured 2319 Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11413
    Download Citation