• Photonics Research
  • Vol. 10, Issue 9, 2122 (2022)
Mengxia Wang1、2、3, Hailong Qiu3、8、*, Tianwen Yang3, Zhengping Wang4, Chuanrui Zhao4, Yuanan Zhao1、2、9、*, Ting Yu5, Yuyao Jiang5、6, Meiling Chen1、2, Yafei Lian1、2, Ge Zhang1、2, Hongjun Liu3, Zhanggui Hu3, and Jianda Shao1、2、7、10、*
Author Affiliations
  • 1Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
  • 4State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 5Laboratory of High Power Fiber Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 6College of Science, Shanghai University, Shanghai 200444, China
  • 7Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 8e-mail: qiu@tjut.edu.cn
  • 9e-mail: yazhao@siom.ac.cn
  • 10e-mail: jdshao@siom.ac.cn
  • show less
    DOI: 10.1364/PRJ.461522 Cite this Article Set citation alerts
    Mengxia Wang, Hailong Qiu, Tianwen Yang, Zhengping Wang, Chuanrui Zhao, Yuanan Zhao, Ting Yu, Yuyao Jiang, Meiling Chen, Yafei Lian, Ge Zhang, Hongjun Liu, Zhanggui Hu, Jianda Shao. Broadband 1T-polytype tantalum disulfide saturable absorber for solid-state bulk lasers[J]. Photonics Research, 2022, 10(9): 2122 Copy Citation Text show less
    References

    [1] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [2] X. F. Wang, Y. Wang, B. B. Zhang, F. F. Zhang, Z. H. Yang, S. L. Pan. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew. Chem. Int. Ed., 129, 14307-14311(2017).

    [3] H. W. Yu, J. Young, H. P. Wu, W. G. Zhang, J. M. Rondinelli, P. S. Halasyamani. Electronic, crystal chemistry, and nonlinear optical property relationships in the dugganite A3B3Cd2O14 family. J. Am. Chem. Soc., 138, 4984-4989(2016).

    [4] R. I. Woodward, E. J. R. Kelleher. 2D saturable absorbers for fibre lasers. Appl. Sci., 5, 1440-1456(2015).

    [5] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [6] Y. Zhang, X. Li, A. Qyyum, T. Feng, P. Guo, J. Jiang, H. Zheng. PbS nanoparticles for ultrashort pulse generation in optical communication region. Part. Part. Syst. Char., 35, 1800341(2018).

    [7] J. Feng, X. Li, Z. Shi, C. Zheng, X. Li, D. Leng, Y. Wang, J. Liu, L. Zhu. 2D ductile transition metal chalcogenides (TMCs): novel high-performance Ag2S nanosheets for ultrafast photonics. Adv. Opt. Mater., 8, 1901762(2020).

    [8] X. Li, J. Feng, W. Mao, F. Yin, J. Jiang. Emerging uniform Cu2O nanocubes for 251st harmonic ultrashort pulse generation. J. Mater. Chem. C, 8, 14386-14392(2020).

    [9] T. T. Kajava, A. L. Gaeta. Q switching of a diode-pumped Nd: YAG laser with GaAs. Opt. Lett., 21, 1244-1246(1996).

    [10] M. E. Jazi, M. D. Baghi, M. Hajimahmodzadeh, M. Soltanolkotabi. Pulsed Nd:YAG passive Q-switched laser using Cr4+:YAG crystal. Opt. Laser Technol., 44, 522-527(2012).

    [11] S. D. Liu, B. T. Zhang, J. L. He, H. W. Yang, J. L. Xu, F. Q. Liu, H. T. Huang. Diode-pumped passively Q-switched Nd:GAGG laser at 938 nm with V3+:YAG saturable absorber. Laser Phys. Lett., 7, 715-718(2010).

    [12] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [13] J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun., 7, 13352(2016).

    [14] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim. A roadmap for graphene. Nature, 490, 192-200(2012).

    [15] C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, H. Zhang. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv. Opt. Mater., 5, 1700884(2017).

    [16] T. L. Li, R. Hao, L. L. Zhang, J. Y. Mao, F. Li, Y. P. Zhang, J. X. Fang, L. Zhang. Superior third-order nonlinearity in inorganic fullerene-like WS2 nanoparticles. Photon. Res., 8, 1881-1887(2020).

    [17] B. Guo, Q. L. Xiao, S. Wang, H. Zhang. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev., 13, 1800327(2019).

    [18] W. Liu, M. Liu, X. Liu, X. Wang, H. X. Deng, M. Lei, Z. Wei, Z. Wei. Recent advances of 2D materials in nonlinear photonics and fiber lasers. Adv. Opt. Mater., 8, 1901631(2020).

    [19] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [20] M. X. Wang, J. Zhang, Z. P. Wang, C. Wang, S. van Smaalen, H. Xiao, X. Chen, C. L. Du, X. G. Xu, X. T. Tao. Broadband CrOCl saturable absorber with a spectral region extension to 10.6 μm. Adv. Opt. Mater., 8, 1901446(2020).

    [21] G. Sobon. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators. Photon. Res., 3, A56-A63(2015).

    [22] H. Lin, S. Fraser, M. H. Hong, M. Chhowalla, D. Li, B. H. Jia. Near-perfect microlenses based on graphene microbubbles. Adv. Photon., 2, 055001(2020).

    [23] A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, Z. Sun. Nonlinear optics with 2D layered materials. Adv. Mater., 30, 1705963(2018).

    [24] L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y.-J. Kim, R. Gorbachev, T. Georgiou, S. Morozov. Strong light-matter interactions in heterostructures of atomically thin films. Science, 340, 1311-1314(2013).

    [25] Z. P. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photonics, 10, 227-238(2016).

    [26] P. K. Cheng, C. Y. Tang, X. Y. Wang, L. H. Zeng, Y. H. Tsang. Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber. Photon. Res., 8, 511-518(2020).

    [27] B. H. Chen, X. Y. Zhang, K. Wu, H. Wang, J. Wang, J. P. Chen. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express, 23, 26723-26737(2015).

    [28] M. Zhang, Q. Wu, F. Zhang, L. L. Chen, X. X. Jin, Y. W. Hu, Z. Zheng, H. Zhang. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater., 7, 1800224(2019).

    [29] R. Ang, Y. Tanaka, E. Ieki, K. Nakayama, T. Sato, L. Li, W. Lu, Y. Sun, T. Takahashi. Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2. Phys. Rev. Lett., 109, 176403(2012).

    [30] I. Vaskivskyi, I. A. Mihailovic, S. Brazovskii, J. Gospodaric, T. Mertelj, D. Svetin, P. Sutar, D. Mihailovic. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun., 7, 11442(2016).

    [31] X. Xue, X. Wang, Y. Song, W. Mi. Electronic structure of transitional metal doped two dimensional 1T-TaS2: a first-principles study. J. Alloy. Compd., 739, 723-728(2018).

    [32] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, R. Shimano. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science, 345, 1145-1149(2014).

    [33] E. J. Sie, C. M. Nyby, C. D. Pemmaraju, S. J. Park, X. Shen, J. Yang, M. C. Hoffmann, B. K. Ofori-Okai, R. Li, A. H. Reid, S. Weathersby, E. Mannebach, N. Finney, D. Rhodes, D. Chenet, A. Antony, L. Balicas, J. Hone, T. P. Devereaux, T. F. Heinz, X. Wang, A. M. Lindenberg. An ultrafast symmetry switch in a Weyl semimetal. Nature, 565, 61-66(2019).

    [34] T. Danz, T. Domröse, C. Ropers. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science, 371, 371-374(2021).

    [35] T. Patel, J. Okamoto, T. Dekker, B. W. Yang, J. J. Gao, X. Luo, W. J. Lu, Y. P. Sun, A. W. Tsen. Photocurrent imaging of multi-memristive charge density wave switching in two-dimensional 1T-TaS2. Nano Lett., 20, 7200-7206(2020).

    [36] J. Martincová, M. Otyepka, P. Lazar. Oxidation of metallic two-dimensional transition metal dichalcogenides: 1T-MoS2 and 1T-TaS2. 2D Mater., 7, 045005(2020).

    [37] K. Hu, Q. J. Chen, S. Y. Xie. Pressure induced superconductive 10-fold coordinated TaS2: a first-principles study. J. Phys. Condens. Matter, 32, 085402(2019).

    [38] R. Zhao, Y. Wang, D. Deng, X. Luo, W. Lu, Y. Sun, Z. Liu, L. Qin, J. Robinson. Tuning phase transitions in 1T-TaS2 via the substrate. Nano Lett., 17, 3471-3477(2017).

    [39] L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P. S. Cornaglia, A. Georges, M. Wolf. Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition. Phys. Rev. Lett., 97, 067402(2006).

    [40] Y. Yu, F. Yang, X. Lu, Y. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, S. Li, S. W. Cheong, X. Chen, Y. Zhang. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol., 10, 270-276(2015).

    [41] W. Fu, Y. Chen, J. H. Lin, X. W. Wang, Q. S. Zeng, J. D. Zhou, L. Zheng, H. Wang, Y. M. He, H. Y. He, Q. D. Fu, K. Suenaga, T. Yu, Z. Liu. Controlled synthesis of atomically thin 1T-TaS2 for tunable charge density wave phase transitions. Chem. Mater., 28, 7613-7618(2016).

    [42] M. A. K. Pathan, A. Gupta, M. E. Vaida. Exploring the growth and oxidation of 2D-TaS2 on Cu (111). Nanotechnology, 32, 505605(2021).

    [43] F. Jellinek. The system tantalum-sulfur. J. Less Common Metals, 4, 9-15(1962).

    [44] P. Lazar, J. Martincová, M. Otyepka. Structure, dynamical stability, and electronic properties of phases in TaS2 from a high-level quantum mechanical calculation. Phys. Rev. B, 92, 224104(2015).

    [45] Q. Dong, Q. Li, S. Li, X. Shi, S. Niu, S. Liu, R. Liu, B. Liu, X. Luo, J. Si, W. Lu, N. Hao, Y. Sun, B. Liu. Structural phase transition and superconductivity hierarchy in 1T-TaS2 under pressure up to 100 GPa. NPJ Quantum Mater., 6, 20(2021).

    [46] X. S. Wang, H. N. Liu, J. X. Wu, J. H. Lin, W. He, H. Wang, X. H. Shi, K. Suenaga, L. M. Xie. Chemical growth of 1T-TaS2 monolayer and thin films: robust charge density wave transitions and high bolometric responsivity. Adv. Mater., 30, 1800074(2018).

    [47] H. C. Lan, F. Liang, X. X. Jiang, C. Zhang, H. H. Yu, Z. S. Lin, H. J. Zhang, J. Y. Wang, Y. C. Wu. Pushing nonlinear optical oxides into the mid-infrared spectral region beyond 10 μm: design, synthesis, and characterization of La3SnGa5O14. J. Am. Chem. Soc., 140, 4684-4690(2018).

    [48] J. W. Shi, J. R. Zhu, X. X. Wu, B. Y. Zheng, J. Chen, X. Y. Sui, S. Zhang, J. Shi, W. N. Du, Y. G. Zhong, Q. Wang, Q. Zhang, A. Pan, X. F. Liu. Enhanced trion emission and carrier dynamics in monolayer WS2 coupled with plasmonic nanocavity. Adv. Opt. Mater., 8, 2001147(2020).

    [49] Q. C. Sun, L. Yadgarov, R. Rosentsveig, G. Seifert, R. Tenne, J. L. Musfeldt. Observation of a Burstein–Moss shift in rhenium-doped MoS2 nanoparticles. ACS Nano, 7, 3506-3511(2013).

    [50] A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, T. F. Heinz. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics, 9, 466-470(2015).

    [51] T. N. Lin, S. R. M. Santiago, S. P. Caigas, C. T. Yuan, T. Y. Lin, J. L. Shen, Y. F. Chen. Many-body effects in doped WS2 monolayer quantum disks at room temperature. npj 2D Mater. Appl., 3, 46(2019).

    [52] H. R. Mu, Y. Liu, S. R. Bongu, X. Z. Bao, L. Li, S. Xiao, J. C. Zhuang, C. Liu, Y. Huang, Y. Dong, K. Helmerson, J. Wang, G. Y. Liu, Y. Du, Q. L. Bao. Germanium nanosheets with Dirac characteristics as a saturable absorber for ultrafast pulse generation. Adv. Mater., 33, 2101042(2021).

    [53] W. T. Yan, Y. P. Han, Q. Fu, T. Xu, S. Yin, W. Wu, W. Liu. Ultrafast carrier relaxation in SnSex (x = 1, 2) thin films observed using femtosecond time-resolved transient absorption spectroscopy. Opt. Mater., 108, 110440(2020).

    [54] M. C. Downer, C. V. Shank. Ultrafast heating of silicon on sapphire by femtosecond optical pulses. Phys. Rev. Lett., 56, 761-764(1986).

    [55] M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, C. K. N. Patel. High-sensitivity detection of TNT. Proc. Natl. Acad. Sci. USA, 103, 19630-19634(2006).

    [56] R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi. Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun., 2, 537(2011).

    [57] L. Zhou, Y. Wang, Y. Wang, S. Xiao, J. He. Saturable absorption and self-defocusing response of 2D monoelemental germanium nanosheets in broadband spectra. Opt. Express, 29, 39115-39124(2021).

    [58] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(1990).

    [59] E. Garmire. Resonant optical nonlinearities in semiconductors. IEEE J. Sel. Top. Quantum Electron., 6, 1094-1110(2000).

    [60] J. Guo, J. L. Zhao, D. Z. Huang, Y. Z. Wang, F. Zhang, Y. Q. Ge, Y. F. Song, C. Y. Xing, D. Y. Fa, H. Zhang. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale, 11, 6235-6242(2019).

    [61] S. F. Zhang, C. R. Shen, I. M. Kislyakov, N. N. Dong, A. Ryzhov, X. Y. Zhang, I. M. Belousova, J. M. Nunzi, J. Wang. Photonic-crystal-based broadband graphene saturable absorber. Opt. Lett., 44, 4785-4788(2019).

    [62] Y. W. Wang, G. H. Huang, H. R. Mu, S. H. Lin, J. Z. Chen, S. Xiao, Q. L. Bao, J. He. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension. Appl. Phys. Lett., 107, 091905(2015).

    [63] T. Wang, X. X. Jin, J. Yang, J. Wu, Q. Yu, Z. H. Pan, H. S. Wu, J. Z. Li, R. T. Su, J. M. Xu, K. Zhang, T. C. He, P. Zhou. Ultra-stable pulse generation in ytterbium-doped fiber laser based on black phosphorus. Nanoscale Adv., 1, 195-202(2019).

    [64] S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, J. Wang. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano, 9, 7142-7150(2015).

    [65] N. N. Dong, Y. X. Li, S. F. Zhang, N. McEvoy, X. Y. Zhang, Y. Cui, L. Zhang, G. S. Duesberg, J. Wang. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption. Opt. Lett., 41, 3936-3939(2016).

    [66] R. N. Verrone, C. Moisset, F. Lemarchand, A. Campos, M. Univ, C. P. Pellegrino, J. L. Lumeau, J. Y. Natoli, K. Iliopoulos. Thickness-dependent optical nonlinearities of nanometer-thick Sb2Te3 thin films: implications for mode-locking and super-resolved direct laser writing. ACS Appl. Nano Mater., 3, 7963-7972(2020).

    [67] P. D. Cunningham, A. T. Hanbicki, K. M. McCreary, B. T. Jonker. Photoinduced bandgap renormalization and exciton binding energy reduction in WS2. ACS Nano, 11, 12601-12608(2017).

    [68] Y. Li, X. Wu, W. Liu, H. Xu, X. Liu. Revealing the interrelation between C- and A-exciton dynamics in monolayer WS2 via transient absorption spectroscopy. Appl. Phys. Lett., 119, 051106(2021).

    Mengxia Wang, Hailong Qiu, Tianwen Yang, Zhengping Wang, Chuanrui Zhao, Yuanan Zhao, Ting Yu, Yuyao Jiang, Meiling Chen, Yafei Lian, Ge Zhang, Hongjun Liu, Zhanggui Hu, Jianda Shao. Broadband 1T-polytype tantalum disulfide saturable absorber for solid-state bulk lasers[J]. Photonics Research, 2022, 10(9): 2122
    Download Citation