• Spectroscopy and Spectral Analysis
  • Vol. 41, Issue 10, 2989 (2021)
Fan DENG1、*, Zhen-lin HU2、2;, Hao-hao CUI2、2;, Deng ZHANG2、2;, Yun TANG4、4;, Zhi-fang ZHAO2、2;, Qing-dong ZENG2、2; 3; *;, and Lian-bo GUO2、2; *;
Author Affiliations
  • 11. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 22. Wuhan National Laboratory for Optoelectronics, Laser and Terahertz Division, Huazhong University of Science and Technology, Wuhan 430074, China
  • 44. School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
  • show less
    DOI: 10.3964/j.issn.1000-0593(2021)10-2989-10 Cite this Article
    Fan DENG, Zhen-lin HU, Hao-hao CUI, Deng ZHANG, Yun TANG, Zhi-fang ZHAO, Qing-dong ZENG, Lian-bo GUO. Progress in the Correction of Self-Absorption Effect on Laser-Induced Breakdown Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 2989 Copy Citation Text show less
    Schematic diagram of self-absorption in LIBS[10]
    Fig. 1. Schematic diagram of self-absorption in LIBS[10]
    Effect of self-absorption on emission line shape[11]
    Fig. 2. Effect of self-absorption on emission line shape[11]
    Schematic diagram of self-absorption correction of LSA-LIBS[20]
    Fig. 3. Schematic diagram of self-absorption correction of LSA-LIBS[20]
    Schematic diagram of MAE-LIBS system[8]
    Fig. 4. Schematic diagram of MAE-LIBS system[8]
    (a): Boltzmann plot (without self-absorption correction); (b): Boltzmann plot (with self-absorption correction)[7]
    Fig. 5. (a): Boltzmann plot (without self-absorption correction); (b): Boltzmann plot (with self-absorption correction)[7]
    Flow diagram of IRSAC algorithm[32]
    Fig. 6. Flow diagram of IRSAC algorithm[32]
    Schematic diagram of reflecting mirror[37]
    Fig. 7. Schematic diagram of reflecting mirror[37]
    类别方法优势劣势
    实验参数实验参数优化原理简单易操作机理研究有待深入
    物 理 辅 助 装 置共振激发自吸收效应抑制效果稳定良好辅助装置价格昂贵
    每次仅针对单个元素
    微波辅助激发辅助装置价格便宜
    同时对多元素实现自吸收抑制
    自吸收抑制效果不稳定
    抑制原理有待更深入的研究
    光纤激光辅助烧蚀辅助装置价格便宜自吸收效应抑制效果不够明显
    抑制原理有待更深入的研究
    正交双脉冲自吸收效应抑制效果较好辅助装置成本较高
    光路较为复杂
    量 化 模 型 和 校 正 算 法成长曲线法可定性评估自吸收效应强弱
    可判断是否存在基体效应
    计算过程繁琐
    需要较多的谱线信息(跃迁参数、 等离子体
    温度、 谱线跃迁振子强度)
    自吸收系数法可直接量化自吸收效应强弱
    无需谱线跃迁信息
    计算所需参数较少
    可对谱线强度和线宽进行校正
    需要斯塔克展宽系数(部分元素难以获取)
    需要无自吸收谱线作为参考
    基于成长曲线法的自吸收校正算法扩展了CF-LIBS的应用范围计算过程繁琐
    理论较为复杂
    基于内参考线的自吸收校正算法原理较为简单
    计算效率高
    自吸收效应校正效果明显
    每个元素必须采集到不存在自吸收效应的谱线
    基于黑体辐射法的自吸收校正算法原理简单
    计算效率高
    无需谱线展宽系数
    可校正谱线玻尔兹曼图
    可获得系统光谱收集效率
    玻尔兹曼图线性系数提升较小(不超过0.12)
    积分法可降低基体效应
    提升定量分析稳定性
    计算过程繁琐
    对于部分元素不适用
    光学薄法可直接获取光学薄等离子体谱线
    可避免理论误差
    必须采集时间分辨光谱
    反射镜法辅助装置价格便宜
    结构简单
    计算过程繁琐
    易受谱线线型影响
    Table 1. The characteristics of various self-absorption correction methods
    Fan DENG, Zhen-lin HU, Hao-hao CUI, Deng ZHANG, Yun TANG, Zhi-fang ZHAO, Qing-dong ZENG, Lian-bo GUO. Progress in the Correction of Self-Absorption Effect on Laser-Induced Breakdown Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 2989
    Download Citation