• Acta Optica Sinica
  • Vol. 38, Issue 3, 328001 (2018)
Liao Yanbiao1、*, Yuan Libo2, and Tian Qian3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/AOS201838.0328001 Cite this Article Set citation alerts
    Liao Yanbiao, Yuan Libo, Tian Qian. The 40 Years of Optical Fiber Sensors in China[J]. Acta Optica Sinica, 2018, 38(3): 328001 Copy Citation Text show less
    References

    [4] Liao Y B. An overview of optical fiber sensors[J]. Chinese Journal of Lasers, 11, 513-519(1984).

    [7] Yang X Y, Liao Y B, Wu G S et al. Analysis of detection system of fiber current sensors[J]. Chinese Journal of Lasers, 14, 312-316(1987).

    [9] Liao Y B. A new detection scheme for overcoming the zero drift problem in polarimetric fiber-optic current sensors. [C]∥Proceedings of Sino-Japanese International Symposium on Optical Sensors, 18-20(1988).

    [10] Liao Y B, Chen G L, Wu G S et al. The experimental study and theoretical analysis of an optical fiber current sensor. [C]∥Optical Fibres and Their Applications V, 185-194(1990).

    [11] Liao Y B. Study of long time stability in the OFCS. [C]∥Proceedings of the International Conferences on Lasers, 833-837(1991).

    [12] Brian C. International conference on optical fibre sensors in China OFS (C)'91[C]. SPIE, 1572, 603(1991).

    [13] Liao Y, Song Q. Optical fiber Mach-Zehnder interferometer for smart skins[C]. Fiber Optic Smart Structures and Skins V, 1798, 186-192(1993).

    [14] Zhang P G, Zhao H F, Liao Y B. Theoretical analysis and design on optical fiber magneto-optic current sensing head[C]. International Conference on Optical Fibre Sensors in China OFS (C)'91, 528-534(1991).

    [21] Jiang Y N, Fan C C, Yang X Y. The fundamental precision limit of optical gyros[J]. Chinese Journal of Lasers, 8, 34-41(1981).

    [22] Zhang W X, Du X Z. Experimental research of a closed-loop fiber-optic gyroscope[J]. Acta Aeronautica et Astronautica Sinica, 12, B148-B153(1991).

    [23] Jin W, Zhang W X[J]. Analysis of fiber optic gyroscopes using E/O frequency shifers Journal of Beijing University of Aeronautics and Astronautics, 1989, 79-85.

    [24] Wang W[J]. A new research on evaluation of combat effectiveness for weapon system Missiles and Space Vehicles, 1994, 23-30.

    [25] Zhou K J, Wang T, Zhang C X et al. A single-mode fiber optic gyroscope with low long-term drift[J]. Chinese Journal of Scientific Instrument, 17, 584-587(1996).

    [26] Ma J, Zhang W X. Research of open-loop all PM-fiber gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 20, 351-356(1994).

    [27] Ye W, Ni Y F, Zhao W D et al. Research on digital signal detection method in closed loop fiber gyros[J]. Acta Photonica Sinica, 27, 334-337(1998).

    [28] Zhang C X, Song N F, Du X Z et al. All digital DSP based closed-loop fiber optic gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 24, 695-698(1998).

    [29] Wang W, Yang Q S, Wang X F. Application of fiber-optic gyro in space and key technology[J]. Infrared and Laser Engineering, 35, 509-512(2006).

    [30] Yang Y, Yu S, Zheng Z et al. Erbium-doped superfluorescent fiber source for fiber optic gyroscope[C]. Advanced Sensor Systems and Applications, 111-115(2002).

    [31] Li C, Yang J, Yu Z et al. Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer[J]. Optics Express, 24, 16247-16257(2016). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-24-15-16247

    [32] Yang Y, Ye M, Duan W et al. Polarization maintaining photonic crystal fiber IFOG[C]. OFS2012 22 nd International Conference on Optical Fiber Sensors, 84210D(2012).

    [34] Feng L, Ren X, Deng X et al. Analysis of a hollow core photonic bandgap fiber ring resonator based on micro-optical structure[J]. Optics Express, 20, 18202-18208(2012). http://www.opticsinfobase.org/abstract.cfm?uri=oe-20-16-18202

    [35] Ma H, Zhang J, Wang L et al. Development and evaluation of optical passive resonant gyroscopes[J]. Journal of Lightwave Technology, 35, 3546-3554(2017). http://ieeexplore.ieee.org/document/7505606/

    [36] Wang Y, Liao Y B. Study of a new non-contact fiber optic vibration sensor[J]. Chinese Journal of Scientific Instrument, 20, 637-640(1999).

    [37] Meng Z, Hu Y, Ni M et al. Development of a 32-element fibre optic hydrophone system[C]. SPIE, 5589, 114-119(2004).

    [38] Ni M, Li X L, Zhang R H et al. Seatests of an all-optical fiber-optic hydrophone system[J]. Acta Acustica, 29, 539-543(2004).

    [41] Zhang W, Liu Y, Li F. Fiber Bragg grating hydrophone with high sensitivity[J]. Chinese Optics Letters, 6, 631-633(2008). http://www.opticsjournal.net/Articles/Abstract?aid=OJ080911000006PlSoVr

    [42] Wang J, Luo H, Meng Z et al. Experimental research of an all-polarization-maintaining optical fiber vector hydrophone[J]. Journal of Lightwave Technology, 30, 1178-1184(2012). http://ieeexplore.ieee.org/document/6035941/

    [43] Kang C, Zhang M, Chen H J et al. Pressure optical fiber vector hydrophone made of thin-walled cylindrical shell[J]. Chinese Journal of Lasers, 35, 1214-1219(2008).

    [44] Luo H, Xiong S D, Hu Y M et al. Research on three-component all polarization-maintaining fiber optic accelerometer[J]. Chinese Journal of Lasers, 32, 1382-1386(2005).

    [45] Zhang H Y, Wang L W, Shi Q P et al. A new demodulation method for time division multiplexing system of fiber-optic hydrophone using a 3×3 couple[J]. Chinese Journal of Lasers, 38, 0505011(2011).

    [46] Jiang Y. Wavelength division multiplexing addressed four-element fiber optical laser hydrophone array[J]. Applied Optics, 46, 2939-2948(2007). http://www.opticsinfobase.org/abstract.cfm?uri=ao-46-15-2939

    [47] Chen W, Meng Z. Effects of phase modulation on threshold of stimulated Brillouin scattering in optical fibers[J]. Chinese Journal of Lasers, 38, 0305002(2011).

    [48] Cao C Y, Xiong S D, Hu Z L et al. Noise analysis of repeaterless long-Haul fiber-optic hydrophone systems with the fiber length up to 200 km[J]. Acta Optica Sinica, 33, 0406006(2013).

    [49] Chen M, Meng Z, Tu X et al. Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser[J]. Optics Letters, 38, 2041-2043(2013). http://europepmc.org/abstract/med/23938970

    [50] Hu Y, Hu Z, Luo H et al. Recent progress toward fiber optic hydrophone research, application and commercialization in China[C]. OFS2012 22 nd International Conference on Optical Fiber Sensors, 84210Q(2012).

    [57] Liao Y B, Li M, Yan C S[M]. Principles of contemporary optical information sensing(2016).

    [58] Jiang D S, Gao X Q. The method of FBG sensing for a sort of dense distributed measurement[J]. Laser and Infrared, 36, 960-962(2006).

    [59] Qiao X G, Han P, Jia Z A et al. Research on simultaneous discriminating measurement of temperature and pressure using fiber grating sensing technology[J]. Journal of Optoelectronics·Lasers, 20, 1186-1188(2009).

    [60] Qiao X, Wang Y, Yang H. et al. Ultrahigh-temperature chirped fiber Bragg grating through thermal activation[J]. IEEE Photonics Technology Letters, 27, 1305-1308(2015). http://ieeexplore.ieee.org/document/7086046/

    [61] Zhang J, Qiao X, Liu F et al. A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter[J]. Journal of Optics, 14, 015402(2011). http://adsabs.harvard.edu/abs/2012JOpt...14a5402Z

    [62] Zhou H, Qiao X G, Li J N et al. Study on property modification with nanometric particles for epoxy adhensive agent used to coat the fiber Bragg grating[J]. Journal of Optoelectronics·Lasers, 20, 590-594(2009).

    [63] Liu Q, Tokunaga T, He Z. Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique[J]. Optics Letters, 36, 4044-4046(2011). http://europepmc.org/abstract/MED/22002380

    [64] Liu Q, Tokunaga T, He Z. Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique[J]. Optics Letters, 37, 434-436(2012). http://www.ncbi.nlm.nih.gov/pubmed/22297377

    [65] Chen J, Liu Q, Fan X et al. Ultrahigh resolution optical fiber strain sensor using dual Pound-Drever-Hall feedback loops[J]. Optics Letters, 41, 1066-1069(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ol-41-5-1066

    [66] Wang C, He J, Zhang J et al. Bragg gratings inscribed in selectively inflated photonic crystal fibers[J]. Optics Express, 25, 28442-28450(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-23-28442

    [67] He J, Wang Y, Liao C et al. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration[J]. Scientific Reports, 6, 23379(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4793244/

    [68] Han P, Li Z, Chen L et al. A high-speed distributed ultra-weak FBG sensing system with high resolution[J]. IEEE Photonics Technology Letters, 29, 1249-1252(2017). http://ieeexplore.ieee.org/document/7938725/

    [69] Hu C, Wen H, Bai W. A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings[J]. Journal of Lightwave Technology, 32, 1406-1411(2014). http://ieeexplore.ieee.org/document/6737268/

    [70] Guo H, Liu F, Yuan Y et al. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber[J]. Optics Express, 23, 4829-4838(2015). http://www.ncbi.nlm.nih.gov/pubmed/25836517

    [71] Yang M, Bai W, Guo H et al. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings[J]. Photonic Sensors, 6, 26-41(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ160412000145UqXtZw

    [72] Ou Y, Zhou C, Qian L et al. Large-capacity multiplexing of near-identical weak fiber Bragg gratings using frequency-shifted interferometry[J]. Optics Express, 23, 31484-31495(2015). http://europepmc.org/abstract/med/26698773

    [73] Xu R, Guo H, Liang L. Distributed fiber optic interferometric geophone system based on draw tower gratings[J]. Photonic Sensors, 7, 246-252(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ171204000078u14z7C

    [74] Xu R Q, Guo H Y, Li W et al. Ultra-narrow linewidth random fiber laser based on all grating fiber[J]. Chinese Journal of Lasers, 43, 1201005(2016).

    [75] Yao Y, Li Z, Wang Y et al. Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser[J]. Sensors, 17, 1472(2017). http://www.ncbi.nlm.nih.gov/pubmed/28640187/

    [76] Zheng Y, Yu H, Guo H et al. Analysis of the spectrum distortions of weak fiber Bragg gratings fabricated In-line on a draw tower by the phase mask technique[J]. Journal of Lightwave Technology, 33, 2670-2673(2015). http://ieeexplore.ieee.org/document/6991515/

    [77] Zheng Y, Yu H, Guo H et al. Theoretical calculations of crosstalk and time delay in identical FBG array in PM fiber[C]. Sensors, 16582151(2016).

    [78] Wang Z, Wen H, Luo Z et al. Time division multiplexing of 106 weak fiber Bragg gratings using a ring cavity configuration[J]. Photonic Sensors, 6, 132-136(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ161020000076y6B9Ea

    [79] Guo H, Qian L, Zhou C et al. Crosstalk and ghost gratings in a large-scale weak fiber bragg grating array[J]. Journal of Lightwave Technology, 35, 2032-2036(2017). http://ieeexplore.ieee.org/document/7782295/

    [81] Zhang Z X, Liu H L, Guo N et al. 30 km distributed optical fiber Raman photons temperature lidar[C]. SPIE, 4893, 78-82(2003).

    [82] Zhou D, Dong Y, Wang B et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements[J]. Optics Express, 25, 1889-1902(2017). http://www.ncbi.nlm.nih.gov/pubmed/29519040

    [83] Teng L, Zhang H, Dong Y et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings[J]. Optics Letters, 41, 4413-4416(2016). http://www.ncbi.nlm.nih.gov/pubmed/27628411

    [84] Dong Y, Teng L, Tong P et al. High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings[J]. Optics Letters, 40, 5003-5006(2015). http://europepmc.org/abstract/MED/26512504

    [85] Dong Y, Xu P, Zhang H et al. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis[J]. Optics Express, 22, 26510-26516(2014). http://www.ncbi.nlm.nih.gov/pubmed/25401802

    [86] Dong Y, Jiang T, Teng L et al. Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings[J]. Optics Letters, 39, 2967-2970(2014). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=208572

    [87] Jia X H, Rao Y J, Chang L et al. Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: Theoretical and experimental investigation[J]. Journal of Lightwave Technology, 28, 1624-1630(2010). http://ieeexplore.ieee.org/document/5440945/

    [88] Zhang C, Rao Y J, Jia X H et al. Brillouin optical time domain analyzer based on bi-directional Raman amplification[J]. Acta Physica Sinica, 59, 5523-5527(2010).

    [89] Zhang C, Rao Y J, Jia X H et al. Influence of optical simple pulse coding on the Brillouin optical time domain analyzer based on bi-directional Raman amplification[J]. Acta Physica Sinica, 60, 104211(2011).

    [90] Wang F, Zhan W, Lu Y et al. Determining the change of Brillouin frequency shift by using the similarity matching method[J]. Journal of Lightwave Technology, 33, 4101-4108(2015). http://www.opticsinfobase.org/abstract.cfm?uri=jlt-33-19-4101

    [91] Zhang Y, Wu X, Ying Z et al. Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator[J]. Electronics Letters, 50, 1014-1016(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6849588

    [92] Tu G, Zhang X, Zhang Y et al. Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system[J]. Electronics Letters, 50, 1624-1626(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6937259

    [93] Song M P, Qiu C. Long-distance Brillouin optical time domain reflectometer with two-parameter sensing for standard single-mode optical fiber[J]. Acta Optica Sinica, 30, 954-958(2010).

    [94] Song M P, Bao C, Qiu C et al. A distributed optical-fiber sensor combined Brillouin optical time-domain analyzer with Brillouin optical time-domain reflectometer[J]. Acta Optica Sinica, 30, 650-654(2010).

    [95] Jia X H, Rao Y J, Peng F et al. Random-lasing-based distributed fiber-optic amplification[J]. Optics Express, 21, 6572-6577(2013). http://www.ncbi.nlm.nih.gov/pubmed/23482228

    [96] Jia X H, Rao Y J, Yuan C X et al. Hybrid distributed Raman amplification combining random fiber laser based 2 nd-order and low-noise LD based 1 st-order pumping [J]. Optics Express, 21, 24611-24619(2013).

    [97] Dong Y, Zhang H, Chen L et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 51, 1229-1235(2012). http://www.ncbi.nlm.nih.gov/pubmed/22441465

    [98] Xie S, Pang M, Bao X et al. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing[J]. Optics Express, 20, 6385-6399(2012). http://www.ncbi.nlm.nih.gov/pubmed/22418520

    [99] Xie S R. Polarization properties of Brillouin scattering and interferometry in optical fibers and their applications on distributed fiber sensing[D]. Beijing: Tsinghua University(2013).

    [101] Wang Y, Wang B, Wang A. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 20, 1636-1638(2008). http://ieeexplore.ieee.org/document/4581643

    [102] Wang Z, Fan M, Zhang L et al. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source[J]. Optics Express, 23, 15514-15520(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-12-15514

    [103] Zhang L, Pan B, Chen G et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser[J]. Applied Optics, 56, 1253-1256(2017). http://europepmc.org/abstract/MED/28158142

    [104] Liu Q, Fan X, He Z. Time-gated digital optical frequency domain reflectometry with 1.6 m spatial resolution over entire 110 km range[J]. Optics Express, 23, 25988-25995(2015). http://www.ncbi.nlm.nih.gov/pubmed/26480114

    [105] Wang S, Fan X, Liu Q et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 23, 33301-33309(2015). http://europepmc.org/abstract/MED/26831995

    [106] Ding Z, Yao X S, Liu T et al. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals[J]. Optics Express, 20, 28319-28329(2012). http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-27-28319

    [107] Wang S, Fan X, Wang B et al. Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications[J]. Optics Express, 25, 10224-10233(2017). http://europepmc.org/abstract/MED/28468396

    [108] Lu B, Pan Z, Wang Z et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse[J]. Optics Letters, 42, 391-394(2017). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-42-3-391

    [109] Chen W M, Wang N, Zhu Y et al. Experimental study on the affection of Gaussian spectrum of light source on the optical fiber F-P strain sensor[J]. Chinese Journal of Lasers, 30, 88-92(2003).

    [110] Zhang G J, Yu Q X. An investigation of fiber-optics sensor based on extrinsic F-P cavity[J]. Chinese Journal of Scientific Instrument, 25, 253-254(2004).

    [111] Zhang P, Wang J, Zhu Y et al. Novel demodulation system of optical fiber Fabry-Perot sensor based on DSP[J]. Chinese Journal of Scientific Instrument, 28, 437-440(2007).

    [112] Lu H S, Zhang P, Chen W M et al. Study on fiber Fabry-Perot strain sensors series and parallel mixed multiplexing with discrete gap transform[J]. Acta Photonica Sinica, 36, 842-846(2007).

    [113] Duan D, Rao Y, Wen W P et al. In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing[J]. Electronics Letters, 47, 401-403(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5735458

    [114] Wang W Y, Wen J X, Pang F F et al. All single-mode fiber Fabry-Perot interferometric high temperature sensor fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 39, 1005001(2012).

    [115] Jiang Y, Tang C. Passive interrogation of an extrinsic Fabry-Pérot interferometer using a three-wavelength method[J]. Optical Engineering, 48, 064401-064405(2009).

    [116] Jiang Y, Tang C. Fourier transform white-light interferometry based spatial frequency-division multiplexing of extrinsic Fabry-Pérot interferometric sensors[J]. Review of Scientific Instruments, 79, 106105(2008).

    [117] Jiang Y. High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method[J]. Applied Optics, 47, 925-932(2008). http://www.opticsinfobase.org/abstract.cfm?uri=ao-47-7-925

    [118] Lou J, Wang Y, Tong L. Microfiber optical sensors: A review[J]. Sensors, 14, 5823-5844(2014). http://pubmedcentralcanada.ca/pmcc/articles/pmid/24670720

    [119] Guo X, Ying Y, Tong L. Photonic nanowires: From subwavelength waveguides to optical sensors[J]. Accounts of Chemical Research, 47, 656-666(2013). http://pubs.acs.org/doi/abs/10.1021/ar400232h

    [120] Kou J L, Ding M, Feng J et al. Microfiber-based Bragg gratings for sensing applications: A review[J]. Sensors, 12, 8861-8876(2012). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444080/

    [121] Sun D, Guo T, Ran Y et al. In-situ DNA hybridization detection with a reflective microfiber grating biosensor[J]. Biosensors and Bioelectronics, 61, 541-546(2014). http://europepmc.org/abstract/med/24953840

    [122] Guo X, Tong L. Supported microfiber loops for optical sensing[J]. Optics Express, 16, 14429-14434(2008). http://europepmc.org/abstract/MED/18794979

    [123] Xu Z, Sun Q, Li B et al. Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect[J]. Optics Express, 23, 6662-6672(2015). http://europepmc.org/abstract/MED/25836883

    [124] Liao C, Wang D, Wang Y. Microfiber in-line Mach-Zehnder interferometer for strain sensing[J]. Optics Letters, 38, 757-759(2013). http://www.ncbi.nlm.nih.gov/pubmed/23455289

    [125] Tan Y, Sun L P, Jin L et al. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications[J]. Optics Express, 21, 154-164(2013). http://europepmc.org/abstract/MED/23388906

    [126] Zhang L, Wang P, Xiao Y et al. Ultra-sensitive microfibre absorption detection in a microfluidic chip[J]. Lab on a Chip, 11, 3720-3724(2011). http://www.ncbi.nlm.nih.gov/pubmed/21947202

    [127] Zhang L, Li Z, Mu J et al. Femtoliter-scale optical nanofiber sensors[J]. Optics Express, 23, 28408-28415(2015). http://europepmc.org/abstract/MED/26561111

    [128] Gu F, Zhang L, Yin X et al. Polymer single-nanowire optical sensors[J]. Nano Letters, 8, 2757-2761(2008). http://pubs.acs.org/doi/pdf/10.1021/nl8012314

    [129] Zhu H, Wang Y, Li B. Tunable refractive index sensor with ultracompact structure twisted by poly (trimethylene terephthalate) nanowires[J]. ACS Nano, 3, 3110-3114(2009). http://pubs.acs.org/doi/abs/10.1021/nn900635b

    [130] Meng C, Xiao Y, Wang P et al. Quantum-dot-doped polymer nanofibers for optical sensing[J]. Advanced Materials, 23, 3770-3774(2011). http://onlinelibrary.wiley.com/doi/10.1002/adma.201101392/pdf

    [131] Wang P, Wang Y, Yang Z et al. Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod[J]. Nano Letters, 15, 7581-7586(2015). http://www.ncbi.nlm.nih.gov/pubmed/26479194

    [132] Huang Y, Yu B, Guo T et al. Ultrasensitive and in situ DNA detection in various pH environments based on a microfiber with a graphene oxide linking layer[J]. RSC Advances, 7, 13177-13183(2017). http://pubs.rsc.org/doi/c7ra00170c

    [133] Jin W, Cao Y, Yang F et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 6, 6767(2015). http://europepmc.org/articles/PMC4403440

    [134] Yang F, Tan Y, Jin W et al. Hollow-core fiber Fabry-Perot photothermal gas sensor[J]. Optics Letters, 41, 3025-3028(2016). http://europepmc.org/abstract/MED/27367092

    [135] Cao Y, Jin W, Ho H L et al. Miniature fiber-tip photoacoustic spectrometer for trace gas detection[J]. Optics Letters, 38, 434-436(2013). http://www.ncbi.nlm.nih.gov/pubmed/23455093

    [136] Wang Q, Wang J, Li L et al. An all-optical photoacoustic spectrometer for trace gas detection[J]. Sensors and Actuators B: Chemical, 153, 214-218(2011). http://www.sciencedirect.com/science/article/pii/S0925400510008531

    [137] Tan Y, Zhang C, Jin W et al. Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-11(2017). http://ieeexplore.ieee.org/document/7562519/

    [138] Mao X, Zhou X, Gong Z et al. An all-optical photoacoustic spectrometer for multi-gas analysis[J]. Sensors and Actuators B: Chemical, 232, 251-256(2016). http://www.sciencedirect.com/science/article/pii/S0925400516304087

    [139] Yang M, Dai J. Fiber optic hydrogen sensors: A review[J]. Photonic Sensors, 4, 300-324(2014). http://www.opticsjournal.net/Articles/Abstract?aid=OJ141208000753qWtZw3

    [140] Yuan L, Yang J, Liu Z et al. In-fiber integrated Michelson interferometer[J]. Optics Letters, 31, 2692-2694(2006). http://europepmc.org/abstract/MED/16936860

    [141] Peng F, Yang J, Li X et al. In-fiber integrated accelerometer[J]. Optics Letters, 36, 2056-2058(2011).

    [142] Zhou A, Zhang Y, Li G et al. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer[J]. Optics Letters, 36, 3221-3223(2011). http://www.opticsinfobase.org/abstract.cfm?uri=ol-36-16-3221

    [143] Yuan L, Yang J, Liu Z. A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer[J]. IEEE Sensors Journal, 8, 1114-1117(2008). http://ieeexplore.ieee.org/document/4567507/

    [144] Hitz B[2017-11-22]. All-fiber Michelson interferometer proposed as unique sensor [2017-11-22].https:∥www.photonics.com/Article.aspx?AID=27246..

    [145] Yang X, Guo X, Li S et al. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber[J]. Optics Letters, 41, 1873-1876(2016). http://www.ncbi.nlm.nih.gov/pubmed/27082367

    [146] Yang X, Zheng Y, Luo S et al. Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide[J]. Sensors and Actuators B: Chemical, 182, 571-575(2013). http://www.sciencedirect.com/science/article/pii/S0925400513003572

    [147] Yuan T, Zhong X, Guan C et al. Long period fiber grating in two-core hollow eccentric fiber[J]. Optics Express, 23, 33378-33385(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-26-33378

    [148] Yuan L, Wang X. Four-beam single fiber optic interferometer and its sensing characteristics[J]. Sensors and Actuators A: Physical, 138, 9-15(2007). http://www.sciencedirect.com/science/article/pii/S0924424707003135

    [149] Yuan L. Recent progress of in-fiber integrated interferometers[J]. Photonic Sensors, 1, 1-5(2011). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1304100000325B8DaG

    [150] Yuan L, Yang J, Guan C et al. Three-core fiber-based shape-sensing application[J]. Optics Letters, 33, 578-580(2008). http://www.ncbi.nlm.nih.gov/pubmed/18347715

    [151] Guan B O, Jin L, Zhang Y et al. Polarimetric heterodyning fiber grating laser sensors[J]. Journal of Lightwave Technology, 30, 1097-1112(2012). http://www.opticsinfobase.org/abstract.cfm?URI=jlt-30-8-1097

    [152] Jin L, Liang Y, Li M P et al. A 16-element multiplexed heterodyning fiber grating laser sensor array[J]. Journal of Lightwave Technology, 32, 3808-3813(2014). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-32-22-3808

    [153] Bai X, Liang Y, Sun H et al. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy[J]. Optics Express, 25, 17616-17626(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-15-17616

    [154] Liu D, Liang Y, Jin L et al. Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications[J]. Optics Letters, 41, 4530-4533(2016). http://europepmc.org/abstract/med/27749873

    [155] Liang Y, Jin L, Wang L et al. Fiber-laser-based ultrasound sensor for photoacoustic imaging[J]. Scientific Reports, 7, 40849(2017). http://www.ncbi.nlm.nih.gov/pubmed/28098201

    [156] Lu Y C, Huang W P, Jian S S. Influence of mode loss on the feasibility of grating-assisted optical fiber surface plasmon resonance refractive index sensors[J]. Journal of Lightwave Technology, 27, 4804-4808(2009). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-27-21-4804

    [157] Zhao Y, Deng Z Q, Wang Q. Fiber optic SPR sensor for liquid concentration measurement[J]. Sensors and Actuators B: Chemical, 192, 229-233(2014). http://www.sciencedirect.com/science/article/pii/S0925400513013105

    [158] Zhao J, Cao S, Liao C et al. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber[J]. Sensors and Actuators B: Chemical, 230, 206-211(2016). http://www.researchgate.net/publication/293642680_Surface_plasmon_resonance_refractive_sensor_based_on_silver-coated_side-polished_fiber

    [159] Tan Z, Hao X, Shao Y et al. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor[J]. Optics Express, 22, 15049-15063(2014). http://www.opticsinfobase.org/abstract.cfm?uri=oe-22-12-15049

    [160] Wang T, Liu T, Liu K et al. An EMD-based filtering algorithm for the fiber-optic SPR sensor[J]. IEEE Photonics Journal, 8, 1-8(2016). http://ieeexplore.ieee.org/document/7466077/

    [161] Caucheteur C, Guo T, Liu F et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs[J]. Nature Communications, 7, 13371(2016). http://europepmc.org/articles/PMC5114639

    [162] Guo T, Liu F, Liang X et al. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings[J]. Biosensors and Bioelectronics, 78, 221-228(2016). http://europepmc.org/abstract/MED/26618641

    [163] Liu Z, Wei Y, Zhang Y et al. Twin-core fiber SPR sensor[J]. Optics Letters, 40, 2826-2829(2015). http://www.ncbi.nlm.nih.gov/pubmed/26076272

    [164] Liu Z, Wei Y, Zhang Y et al. Distributed fiber surface plasmon resonance sensor based on the incident angle adjusting method[J]. Optics Letters, 40, 4452-4455(2015). http://www.ncbi.nlm.nih.gov/pubmed/26421554

    [165] Liang Y, Peng W, Li L et al. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing[J]. Optics Letters, 40, 3909-3912(2015). http://www.ncbi.nlm.nih.gov/pubmed/26274691

    [166] Liang Y, Lu M, Chu S et al. Tunable plasmonic resonances in the hexagonal nanoarrays of annular aperture for biosensing[J]. Plasmonics, 11, 205-212(2016). http://link.springer.com/article/10.1007/s11468-015-0041-0

    [167] Chen S, Liu Y, Liu Q et al. Self-reference surface plasmon resonance biosensor based on multiple-beam interference[J]. IEEE Sensors Journal, 16, 7568-7571(2016). http://ieeexplore.ieee.org/document/7542176/

    [168] Zhang Y, Wang F, Liu Z et al. Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating[J]. Optics express, 25, 24521-24530(2017). http://europepmc.org/abstract/MED/29041396

    [169] Lu M, Zhang X, Liang Y et al. Liquid crystal filled surface plasmon resonance thermometer[J]. Optics Express, 24, 10904-10911(2016). http://europepmc.org/abstract/med/27409911

    [170] Lu M, Liang Y, Qian S et al. Optimization of surface plasmon resonance biosensor with Ag/Au multilayer structure and fiber-optic miniaturization[J]. Plasmonics, 12, 663-673(2017). http://link.springer.com/10.1007/s11468-016-0312-4

    [171] Wang B, Jing Z G, Peng W et al. Phase difference signal processing technology in surface plasmon resonance sensing system[J]. Chinese Journal of Lasers, 42, 0608009(2015).

    [172] Qian S, Liang Y, Ma J et al. Boronic acid modified fiber optic SPR sensor and its application in saccharide detection[J]. Sensors and Actuators B: Chemical, 220, 1217-1223(2015). http://www.sciencedirect.com/science/article/pii/S0925400515008667

    [173] Peng W, Liu Y, Fang P et al. Compact surface plasmon resonance imaging sensing system based on general optoelectronic components[J]. Optics Express, 22, 6174-6185(2014). http://europepmc.org/abstract/med/24663951

    [174] Liu Y, Liu Q, Chen S et al. Surface plasmon resonance biosensor based on smart phone platforms[J]. Scientific Reports, 5, 12864(2015). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542615/

    [175] Jiang Y, Tang C J, Guo G R. Note: Phase compensation in the fiber optical quadrature passive demodulation scheme[J]. Review of Scientific Instruments, 81, 046108(2010). http://scitation.aip.org/content/aip/journal/rsi/81/4/10.1063/1.3397255

    [176] Jiang Y, Ding W H, Liang P J et al. Phase-shifted white-light interferometry for the absolute measurement of fiber optic Mach-Zehnder interferometers[J]. Journal of Lightwave Technology, 28, 3294-3299(2010). http://ieeexplore.ieee.org/document/5582121/

    [177] Jiang Y. Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors[J]. IEEE Photonics Technology Letters, 20, 75-77(2008). http://ieeexplore.ieee.org/document/4408667/

    [178] Jiang Y, Tang C J. Fourier transform white-light interferometry based spatial frequency-division multiplexing of extrinsic Fabry-Pérot interferometric sensors[J]. Review of Scientific Instruments, 79, 106105(2008).

    [179] Wang Q, Yu Q X. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser[J]. Laser Physics Letters, 6, 607-610(2009). http://onlinelibrary.wiley.com/doi/10.1002/lapl.200910042/full

    [180] Zhou X L, Yu Q X. Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement[J]. IEEE Sensors Journal, 11, 1602-1606(2011). http://ieeexplore.ieee.org/document/5678620/

    [181] Wang Q, Zhang L, Sun C et al. Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement[J]. IEEE Sensors Journal, 8, 1879-1883(2008). http://ieeexplore.ieee.org/document/4666724/

    [182] Zhou X L, Yu Q X, Peng W. Simultaneous measurement of down-hole pressure and distributed temperature with single fiber[J]. Measurement Science and Technology, 23, 085102(2012). http://www.paper.edu.cn/en_releasepaper/content/4468473.html

    [183] Rao Y J, Deng M, Duan D W et al. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser[J]. Optics Express, 15, 14123-14128(2007). http://www.opticsinfobase.org/abstract.cfm?id=143092

    [184] Ran Z L, Rao Y J, Liao X. Self-enclosed all-fiber in-line etalon strain sensor micromachined by 157-nm laser pulses[J]. Journal of Lightwave Technology, 27, 3143-3149(2009). http://ieeexplore.ieee.org/document/4838654/

    [185] Ding W H, Jiang Y. Miniature photonic crystal fiber sensor for high-temperature measurement[J]. IEEE Sensors Journal, 14, 786-789(2013). http://ieeexplore.ieee.org/document/6634204

    [186] Liu S, Wang Y P, Liao C R et al. High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer[J]. Optics Letters, 39, 2121-2124(2014). http://www.ncbi.nlm.nih.gov/pubmed?term=24686690

    [187] Liu S, Yang K M, Wang Y P et al. High-sensitivity strain sensor based on in-fiber rectangular air bubble[J]. Scientific Reports, 5, 7624(2015). http://www.ncbi.nlm.nih.gov/pubmed/25557614

    [188] Liao C R, Liu S, Xu L et al. Sub-micron silica diaphragm based fiber-tip Fabry-Perot interferometer for pressure measurement[J]. Optics Letters, 39, 2827-2830(2014). http://www.ncbi.nlm.nih.gov/pubmed/24978213

    CLP Journals

    [1] WANG Yun, DAI Yu-tang, LIU Wen-min, WEI Yu. Optimization Design of Fiber Bragg Grating Two-dimensional Accelerometer Based on Flexure Hinge[J]. Acta Photonica Sinica, 2019, 48(8): 806003

    Liao Yanbiao, Yuan Libo, Tian Qian. The 40 Years of Optical Fiber Sensors in China[J]. Acta Optica Sinica, 2018, 38(3): 328001
    Download Citation