• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 2, 263 (2021)
Jin-Rui ZHANG, Chang-Qing ZHANG, and Jin-Jun FENG*
Author Affiliations
  • Vacuum Electronics National Laboratory, Beijing Vacuum Electronics Research Institute, Beijing 100015, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.02.017 Cite this Article
    Jin-Rui ZHANG, Chang-Qing ZHANG, Jin-Jun FENG. Theoretical study on high frequency characteristics of terahertz staggered grating slow-wave structure[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 263 Copy Citation Text show less
    References

    [1] Da-Sheng LI, Chu-Qiang DENG, Zhen-Hua LIU et al. Research progress of thz imaging radar system. Journal of Microwaves, 31, 82-87(2015).

    [2] J H Booske, R J Dobbs, C D Joye et al. Vacuum electronic high power terahertz sources. IEEE Transactions on Terahertz Science and Technology, 1, 54-75(2011).

    [3] Yu-Bin GONG, Qing ZHOU, Han-Wen TIAN et al. Terahertz radiation sources based on electronics. Journal Of Shenzhen University Science And Engineering, 36, 111-127(2019).

    [4] P Pan, Y F Hu, H Y Li et al. Development of G band folded waveguide TWTs, 1-2(2015).

    [5] J Tucek, M Basten, D Gallagher et al. Operation of a compact 1.03 THz power amplifier, 1-2(2016).

    [6] Han-Yan LI, Jin-Jun FENG. Progress in application and research of UV LIGA techniques in millimeter wave and terahertz devices. Journal of Terahertz Science and Electronic Information Technology, 16, 776-780(2018).

    [7] Y M Shin, L R Barnett, N C Luhmann. Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation. IEEE Transactions on Electron Devices, 56, 706-712(2009).

    [8] Qing-Lun LIU, Zi-Cheng WANG, Pu-Kun LIU et al. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 61, 214-221(2012).

    [9] W Q Xie, Z C Wang, F M He et al. Field theory of a terahertz staggered double-grating arrays waveguide Cerenkov traveling wave amplifier. Physics of Plasmas, 21, 043103(2014).

    [10] W Q Xie, Z C Wang, J R Luo et al. Theory and simulation of arbitrarily shaped groove staggered double grating array waveguide. IEEE transactions on electron devices, 61, 1707-1714(2014).

    [11] B D McVey, M A Basten, J H Booske et al. Analysis of rectangular waveguide-gratings for amplifier applications. IEEE Transactions on microwave theory and techniques, 42, 995-1003(1994).

    [12] Zhi-Gang LU. Study on the rectangular waveguide grating traveling wave amplifier, 16-18(2008).

    [13] A A Maragos, Z C Ioannidis, I G Tigelis. Dispersion characteristics of a rectangular waveguide grating. IEEE transactions on plasma science, 31, 1075-1082(2003).

    [14] Sheng-Gang LIU, Hong-Fu LI, Wen-Xiang WANG. Introduction of microwave electronics, 104-106(1985).

    [15] J P Montgomery. On the complete eigenvalue solution of ridged waveguide. IEEE Transactions on Microwave Theory and Techniques, 19, 547-555(1971).

    [16] Chang-Qing ZHANG, Yu-Bin GONG, Yan-Yu WEI et al. Investigation on loss characteristics of the Sub-millimeter wave folded waveguide slow-wave structure. Semiconductor Optoelectronics, 31, 880-884+944(2010).

    [17] Ke-Qian ZHANG. Electromagnetic theory for microwaves and optoelectronics.

    Jin-Rui ZHANG, Chang-Qing ZHANG, Jin-Jun FENG. Theoretical study on high frequency characteristics of terahertz staggered grating slow-wave structure[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 263
    Download Citation