• Journal of Semiconductors
  • Vol. 40, Issue 2, 022801 (2019)
Feng Liang1, Jing Yang1, Degang Zhao1、2, Zongshun Liu1, Jianjun Zhu1、2, Ping Chen1, Desheng Jiang1, Yongsheng Shi1, Hai Wang1, Lihong Duan1, Liqun Zhang3, and Hui Yang3
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • show less
    DOI: 10.1088/1674-4926/40/2/022801 Cite this Article
    Feng Liang, Jing Yang, Degang Zhao, Zongshun Liu, Jianjun Zhu, Ping Chen, Desheng Jiang, Yongsheng Shi, Hai Wang, Lihong Duan, Liqun Zhang, Hui Yang. Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h[J]. Journal of Semiconductors, 2019, 40(2): 022801 Copy Citation Text show less
    References

    [1] N Ruhnke, A Müller, B Eppich et al. Compact deep UV system at 222.5 nm based on frequency doubling of GaN laser diode emission. IEEE Photonic Tech Lett, 30, 289(2018).

    [2] G R Goldberg, P Ivanov, N Ozaki et al. Gallium nitride light sources for optical coherence tomography. Gallium Nitride Materials and Devices XII, 101041X(2017).

    [3] T Wunderer, J E Northrup, Z Yang et al. Nitride VECSELs as light sources for biomedical applications. CLEO: Applications and Technology, JM3O.1(2013).

    [4] B Xue, Z Liu, J Yang et al. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications. Opt Commun, 410, 525(2018).

    [5] Y F Huang, C T Tsai, Y C Chi et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8-gbps seawater transmission. J Lightwave Technol, 36, 1739(2018).

    [6] U Strauβ, S Brüninghoff, M Schillgalies et al. True-blue InGaN laser for pico size projectors. Gallium Nitride Materials and Devices III, 689417(2008).

    [7] E Buckley. Laser wavelength choices for pico-projector applications. J Display Technol, 7, 402(2011).

    [8] S Essaian, J Khaydarov. State of the art of compact green lasers for mobile projectors. Opt Rev, 19, 400(2012).

    [9] Y Gan, Y Lu, Q Y Xu et al. Compact integrated green laser module for Watt-level display applications. IEEE Photonic Tech Lett, 25, 75(2013).

    [10] S Nakamura, M Senoh, S I Nagahama et al. Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420 mW. Jpn J Appl Phys, 37, L627(1998).

    [11] S Nakamura, M Senoh, S I Nagahama et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys, 35, L74(1996).

    [12] M T Hardy, D F Feezell, S P DenBaars et al. Group III-nitride lasers: a materials perspective. Mater Today, 14, 408(2011).

    [13] T D Moustakas, R Paiella. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep Prog Phys, 80, 106501(2017).

    [14] J Kim, H Kim, S N Lee. Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes. Curr Appl Phys, 11, S167(2011).

    [15] S Masui, Y Nakatsu, D Kasahara et al. Recent improvement in nitride lasers. Gallium Nitride Materials and Devices XII, 101041H(2017).

    [16] S P Najda, P Perlin, T Suski et al. AlGaInN laser-diode technology for optical clocks and atom interferometry. Gallium Nitride Materials and Devices XII, 101041L(2017).

    [17] S P Najda, S Stanczyk, A Kafar et al. Tapered waveguide high power AlGaInN laser diodes and amplifiers for optical integration and quantum technologies. Quantum Technologies & Quantum Information Science, 104420O(2017).

    [18] S P Najda, P Perlin, T Suski et al. GaN laser diodes for high-power optical integration and quantum technologies. Gallium Nitride Materials and Devices XIII, 1053217(2018).

    [19] P Chen, D G Zhao, M X Feng et al. A high power InGaN-based blue-violet laser diode array with a broad-area stripe. Chin Phys Lett, 30, 104205(2013).

    [20] D G Zhao, D S Jiang, L C Le et al. Performance improvement of GaN-based violet laser diodes. Chin Phys Lett, 34, 017101(2017).

    [21] F Liang, D G Zhao, D S Jiang et al. Improvement of Ohmic contact to p-GaN by controlling the residual carbon concentration in p++-GaN layer. J Cryst Growth, 467, 1(2017).

    [22] F Liang, D G Zhao, D S Jiang et al. Influence of residual carbon impurities in a heavily Mg-doped GaN contact layer on an Ohmic contact. Appl Opt, 56, 4197(2017).

    [23] J Yang, D G Zhao, D S Jiang et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 115, 163704(2014).

    [24] J Yang, D G Zhao, D S Jiang et al. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films. J Vac Sci Technol A, 33, 021505(2015).

    [25] F Liang, J Yang, D G Zhao et al. Influence of hydrogen impurity on the resistivity of low temperature grown p-AlxGa1−xN layer (0.08 ≤ x ≤ 0.104). Superlattice Microstruct, 113, 720(2018).

    [26] J Yang, D G Zhao, D S Jiang et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes. Opt Express, 24, 13824(2016).

    [27] F Liang, D G Zhao, D S Jiang et al. Performance enhancement of the GaN-based laser diode by using an unintentionally doped GaN upper waveguide. Jpn J Appl Phys, 57, 070307(2018).

    Feng Liang, Jing Yang, Degang Zhao, Zongshun Liu, Jianjun Zhu, Ping Chen, Desheng Jiang, Yongsheng Shi, Hai Wang, Lihong Duan, Liqun Zhang, Hui Yang. Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h[J]. Journal of Semiconductors, 2019, 40(2): 022801
    Download Citation