[1] D. J. Thomson, A. Zilkie, J. E. Bowers. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).
[2] H. Wu, Q. Dai. Artificial intelligence accelerated by light. Nature, 589, 25-26(2021).
[3] W. Gropp, S. Banerjee, I. Foster. Infrastructure for artificial intelligence, quantum and high performance computing. arXiv(2020).
[4] H. Li, Z. Xuan, R. Kumar. A 4 × 50 Gb/s all-silicon ring-based WDM transceiver with CMOS IC. European Conference on Optical Communication (ECOC), 1-3.
[5] W. Zhang, M. Ebert, K. Li. Harnessing plasma absorption in silicon MOS ring modulators. Nat. Photonics, 17, 273-279(2023).
[6] Y. Peng, Y. Yuan, W. V. Sorin. All-silicon microring avalanche photodiodes with a >65 A/W response. Opt. Lett., 48, 1315-1318(2023).
[7] M. Sakib, P. Liao, R. Kumar. A 112 Gb/s all-silicon micro-ring photodetector for datacom applications. Optical Fiber Communications Conference and Exhibition (OFC), 1-3.
[8] G. T. Reed, G. Mashanovich, F. Y. Gardes. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).
[9] B. Chen, X. Yu, X. Chen. Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devices. Opt. Express, 26, 24953-24963(2018).
[10] X. Yu, X. Chen, M. M. Milosevic. Electrically erasable optical I/O for wafer scale 268 testing of silicon photonic integrated circuits. IEEE Photonics J., 12, 3027799(2020).
[11] X. Yu, X. Chen, M. M. Milosevic. Ge 270 ion implanted photonic devices and annealing for emerging applications. Micromachines, 13, 291(2022).
[12] R. Loiacono, G. T. Reed, G. Z. Mashanovich. Laser 272 erasable implanted gratings for integrated silicon photonics. Opt. Express, 19, 10728-10734(2011).
[13] H. Li, G. Balamurugan, T. Kim. A 3-D-integrated silicon photonic microring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J. Solid-State Circuits, 56, 19-29(2020).
[14] N. Mehta, S. Lin, B. Yin. A laser-forwarded coherent transceiver in 45-nm SOI CMOS using monolithic microring resonators. IEEE J. Solid-State Circuits, 55, 1096-1107(2020).
[15] S. Agarwal, M. Ingels, M. Pantouvaki. Wavelength locking of a Si ring modulator using an integrated drop-port OMA monitoring circuit. IEEE J. Solid-State Circuits, 51, 2328-2344(2016).
[16] T. Horikawa, D. Shimura, H. Okayama. A 300-mm silicon photonics platform for large-scale device integration. IEEE J. Sel. Top. Quantum. Electron., 24, 8200415(2018).
[17] T. Horikawa, D. Shimura, H. Okayama. Resonant wavelength variation modelling for microring resonators based on fabrication deviation analysis. European Conference on Optical Communication (ECOC), 1-3(2017).
[18] P. Le Maître, J. F. Carpentier, C. Baudot. Impact of process variability of active ring resonators in a 300 mm silicon photonic platform. European Conference on Optical Communication (ECOC), 1-3(2015).
[19] D. Pérez-López, A. López, P. DasMahapatra. Multipurpose self-configuration of programmable photonic circuits. Nat. Commun., 11, 6359(2020).
[20] W. Bogaerts, D. Pérez, J. Capmany. Programmable photonic circuits. Nature, 586, 207-216(2020).
[21] H. Yu, D. Korn, M. Pantouvaki. Using carrier-depletion silicon modulators for optical power monitoring. Opt. Lett., 37, 4681-4683(2012).
[22] K. Goi, N. Ishikura, H. Ishihara. Low-voltage silicon Mach-Zehnder modulator operating at high temperatures without thermo-electric cooling. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2015).
[23] H. Zhu, K. Goi, K. Ogawa. All-silicon waveguide photodetection for low-bias power monitoring and 20-km 28-Gb/s NRZ-OOK signal transmission. IEEE J. Sel. Top. Quantum. Electron., 24, 4400207(2018).
[24] X. Xiao, X. Li, H. Xu. 44-Gb/s silicon microring modulators based on zigzag PN junctions. IEEE Photonics Technol. Lett., 24, 1712-1714(2012).
[25] X. Li, Z. Li, X. Xiao. 40 Gb/s all-silicon photodetector based on microring resonators. IEEE Photonics Technol. Lett., 27, 729-732(2015).
[26] J. B. You, H. Kwon, J. Kim. Photon-assisted tunneling for sub-bandgap light detection in silicon PN-doped waveguides. Opt. Express, 25, 4284-4297(2017).
[27] Y. Yuan, W. V. Sorin, D. Liang. Mechanisms of enhanced sub-bandgap absorption in high-speed all-silicon avalanche photodiodes. Photonics Res., 11, 337-346(2023).
[28] Y. Yuan, W. V. Sorin, Z. Huang. A 100 Gb/s PAM4 two-segment silicon microring resonator modulator using a standard foundry process. ACS Photonics, 9, 1165-1171(2022).
[29] X. Xiao, L. Wang, J. Liu. Silicon microring-based modulators and photodetectors beyond 100 Gbaud. 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), 1-3(2022).
[30] Y. Zhang, H. Zhang, J. Zhang. 240 Gb/s optical transmission based on an ultrafast silicon microring modulator. Photonics Res., 10, 1127-1133(2022).
[31] M. Sakib, P. Liao, C. Ma. A high-speed micro-ring modulator for next generation energy-efficient optical networks beyond 100 Gbaud. CLEO: Science and Innovations, SF1C-3(2021).
[32] Y. Yuan, Y. Peng, Z. Huang. An O-band all-silicon microring avalanche photodiode with >38 GHz RF bandwidth. IEEE Silicon Photonics Conference (SiPhotonics), 1-2(2023).
[33] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).
[34] V. Van. Optical Microring Resonators: Theory, Techniques, and Applications(2016).
[35] S. S. Li. Semiconductor Physical Electronics(2012).
[36] M. J. Lee, H. Rücker, W. Y. Choi. Optical-power dependence of gain, noise, and bandwidth characteristics for 850-nm CMOS silicon avalanche photodetectors. IEEE J. Sel. Top. Quantum Electron., 20, 211-217(2014).
[37] J. F. Buckwalter, X. Zheng, G. Li. A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOSSOI process. IEEE J. Solid-State Circuits, 47, 1309-1322(2012).
[38] D. Guermandi, L. Bogaerts, M. Rakowski. TSV-assisted hybrid FinFET CMOS — silicon photonics technology for high density optical I/O. 45th European Conference on Optical Communication (ECOC), 1-4(2019).
[39] M. Raj, Y. Frans, P. C. Chiang. Design of a 50-Gb/s hybrid integrated Si-photonic optical link in 16-nm FinFET. IEEE J. Solid-State Circuits, 55, 1086-1095(2020).
[40] Y. Ban, M. Kim, P. De Heyn. Highly optimized O-band Si ring modulators for low-power hybrid CMOS-SiPho transceivers. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2023).
[41] https://www.cornerstone.sotonfab.co.uk/. https://www.cornerstone.sotonfab.co.uk/
[42] S.-H. Jeong, D. Shimura, T. Simoyama. Si-nanowire-based multistage delayed Mach–Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer. Opt. Lett., 39, 3702-3705(2014).
[43] Z. Mohammed, B. Paredes, M. Rasras. CMOS compatible ultra-compact MMI based wavelength diplexer with 60 Gbit/s system demonstration. Opt. Express, 30, 8257-8265(2022).
[44] https://doi.org/10.5258/SOTON/D2921. https://doi.org/10.5258/SOTON/D2921