• Photonics Research
  • Vol. 12, Issue 4, 701 (2024)
Junbo Zhu1,2,3, Weiwei Zhang1,*, Ke Li1,4, Bharat Pant1..., Martin Ebert1, Xingzhao Yan1, Mehdi Banakar1, Dehn T. Tran1, Callum G. Littlejohns1, Fuwan Gan2, Graham Reed1 and David J. Thomson1,5|Show fewer author(s)
Author Affiliations
  • 1Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
  • 2National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Peng Cheng Laboratory, Shenzhen, China
  • 5e-mail: d.thomson@soton.ac.uk
  • show less
    DOI: 10.1364/PRJ.509237 Cite this Article Set citation alerts
    Junbo Zhu, Weiwei Zhang, Ke Li, Bharat Pant, Martin Ebert, Xingzhao Yan, Mehdi Banakar, Dehn T. Tran, Callum G. Littlejohns, Fuwan Gan, Graham Reed, David J. Thomson, "Universal silicon ring resonator for error-free transmission links," Photonics Res. 12, 701 (2024) Copy Citation Text show less
    References

    [1] D. J. Thomson, A. Zilkie, J. E. Bowers. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [2] H. Wu, Q. Dai. Artificial intelligence accelerated by light. Nature, 589, 25-26(2021).

    [3] W. Gropp, S. Banerjee, I. Foster. Infrastructure for artificial intelligence, quantum and high performance computing. arXiv(2020).

    [4] H. Li, Z. Xuan, R. Kumar. A 4 × 50  Gb/s all-silicon ring-based WDM transceiver with CMOS IC. European Conference on Optical Communication (ECOC), 1-3.

    [5] W. Zhang, M. Ebert, K. Li. Harnessing plasma absorption in silicon MOS ring modulators. Nat. Photonics, 17, 273-279(2023).

    [6] Y. Peng, Y. Yuan, W. V. Sorin. All-silicon microring avalanche photodiodes with a >65  A/W response. Opt. Lett., 48, 1315-1318(2023).

    [7] M. Sakib, P. Liao, R. Kumar. A 112  Gb/s all-silicon micro-ring photodetector for datacom applications. Optical Fiber Communications Conference and Exhibition (OFC), 1-3.

    [8] G. T. Reed, G. Mashanovich, F. Y. Gardes. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [9] B. Chen, X. Yu, X. Chen. Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devices. Opt. Express, 26, 24953-24963(2018).

    [10] X. Yu, X. Chen, M. M. Milosevic. Electrically erasable optical I/O for wafer scale 268 testing of silicon photonic integrated circuits. IEEE Photonics J., 12, 3027799(2020).

    [11] X. Yu, X. Chen, M. M. Milosevic. Ge 270 ion implanted photonic devices and annealing for emerging applications. Micromachines, 13, 291(2022).

    [12] R. Loiacono, G. T. Reed, G. Z. Mashanovich. Laser 272 erasable implanted gratings for integrated silicon photonics. Opt. Express, 19, 10728-10734(2011).

    [13] H. Li, G. Balamurugan, T. Kim. A 3-D-integrated silicon photonic microring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J. Solid-State Circuits, 56, 19-29(2020).

    [14] N. Mehta, S. Lin, B. Yin. A laser-forwarded coherent transceiver in 45-nm SOI CMOS using monolithic microring resonators. IEEE J. Solid-State Circuits, 55, 1096-1107(2020).

    [15] S. Agarwal, M. Ingels, M. Pantouvaki. Wavelength locking of a Si ring modulator using an integrated drop-port OMA monitoring circuit. IEEE J. Solid-State Circuits, 51, 2328-2344(2016).

    [16] T. Horikawa, D. Shimura, H. Okayama. A 300-mm silicon photonics platform for large-scale device integration. IEEE J. Sel. Top. Quantum. Electron., 24, 8200415(2018).

    [17] T. Horikawa, D. Shimura, H. Okayama. Resonant wavelength variation modelling for microring resonators based on fabrication deviation analysis. European Conference on Optical Communication (ECOC), 1-3(2017).

    [18] P. Le Maître, J. F. Carpentier, C. Baudot. Impact of process variability of active ring resonators in a 300 mm silicon photonic platform. European Conference on Optical Communication (ECOC), 1-3(2015).

    [19] D. Pérez-López, A. López, P. DasMahapatra. Multipurpose self-configuration of programmable photonic circuits. Nat. Commun., 11, 6359(2020).

    [20] W. Bogaerts, D. Pérez, J. Capmany. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [21] H. Yu, D. Korn, M. Pantouvaki. Using carrier-depletion silicon modulators for optical power monitoring. Opt. Lett., 37, 4681-4683(2012).

    [22] K. Goi, N. Ishikura, H. Ishihara. Low-voltage silicon Mach-Zehnder modulator operating at high temperatures without thermo-electric cooling. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2015).

    [23] H. Zhu, K. Goi, K. Ogawa. All-silicon waveguide photodetection for low-bias power monitoring and 20-km 28-Gb/s NRZ-OOK signal transmission. IEEE J. Sel. Top. Quantum. Electron., 24, 4400207(2018).

    [24] X. Xiao, X. Li, H. Xu. 44-Gb/s silicon microring modulators based on zigzag PN junctions. IEEE Photonics Technol. Lett., 24, 1712-1714(2012).

    [25] X. Li, Z. Li, X. Xiao. 40  Gb/s all-silicon photodetector based on microring resonators. IEEE Photonics Technol. Lett., 27, 729-732(2015).

    [26] J. B. You, H. Kwon, J. Kim. Photon-assisted tunneling for sub-bandgap light detection in silicon PN-doped waveguides. Opt. Express, 25, 4284-4297(2017).

    [27] Y. Yuan, W. V. Sorin, D. Liang. Mechanisms of enhanced sub-bandgap absorption in high-speed all-silicon avalanche photodiodes. Photonics Res., 11, 337-346(2023).

    [28] Y. Yuan, W. V. Sorin, Z. Huang. A 100  Gb/s PAM4 two-segment silicon microring resonator modulator using a standard foundry process. ACS Photonics, 9, 1165-1171(2022).

    [29] X. Xiao, L. Wang, J. Liu. Silicon microring-based modulators and photodetectors beyond 100 Gbaud. 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), 1-3(2022).

    [30] Y. Zhang, H. Zhang, J. Zhang. 240  Gb/s optical transmission based on an ultrafast silicon microring modulator. Photonics Res., 10, 1127-1133(2022).

    [31] M. Sakib, P. Liao, C. Ma. A high-speed micro-ring modulator for next generation energy-efficient optical networks beyond 100 Gbaud. CLEO: Science and Innovations, SF1C-3(2021).

    [32] Y. Yuan, Y. Peng, Z. Huang. An O-band all-silicon microring avalanche photodiode with >38  GHz RF bandwidth. IEEE Silicon Photonics Conference (SiPhotonics), 1-2(2023).

    [33] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [34] V. Van. Optical Microring Resonators: Theory, Techniques, and Applications(2016).

    [35] S. S. Li. Semiconductor Physical Electronics(2012).

    [36] M. J. Lee, H. Rücker, W. Y. Choi. Optical-power dependence of gain, noise, and bandwidth characteristics for 850-nm CMOS silicon avalanche photodetectors. IEEE J. Sel. Top. Quantum Electron., 20, 211-217(2014).

    [37] J. F. Buckwalter, X. Zheng, G. Li. A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOSSOI process. IEEE J. Solid-State Circuits, 47, 1309-1322(2012).

    [38] D. Guermandi, L. Bogaerts, M. Rakowski. TSV-assisted hybrid FinFET CMOS — silicon photonics technology for high density optical I/O. 45th European Conference on Optical Communication (ECOC), 1-4(2019).

    [39] M. Raj, Y. Frans, P. C. Chiang. Design of a 50-Gb/s hybrid integrated Si-photonic optical link in 16-nm FinFET. IEEE J. Solid-State Circuits, 55, 1086-1095(2020).

    [40] Y. Ban, M. Kim, P. De Heyn. Highly optimized O-band Si ring modulators for low-power hybrid CMOS-SiPho transceivers. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2023).

    [41] https://www.cornerstone.sotonfab.co.uk/. https://www.cornerstone.sotonfab.co.uk/

    [42] S.-H. Jeong, D. Shimura, T. Simoyama. Si-nanowire-based multistage delayed Mach–Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300  mm SOI wafer. Opt. Lett., 39, 3702-3705(2014).

    [43] Z. Mohammed, B. Paredes, M. Rasras. CMOS compatible ultra-compact MMI based wavelength diplexer with 60 Gbit/s system demonstration. Opt. Express, 30, 8257-8265(2022).

    [44] https://doi.org/10.5258/SOTON/D2921. https://doi.org/10.5258/SOTON/D2921

    Junbo Zhu, Weiwei Zhang, Ke Li, Bharat Pant, Martin Ebert, Xingzhao Yan, Mehdi Banakar, Dehn T. Tran, Callum G. Littlejohns, Fuwan Gan, Graham Reed, David J. Thomson, "Universal silicon ring resonator for error-free transmission links," Photonics Res. 12, 701 (2024)
    Download Citation