• Laser & Optoelectronics Progress
  • Vol. 61, Issue 10, 1000002 (2024)
Zhijuan Sun, Dongdong Han, and Yonglai Zhang*
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, Jilin , China
  • show less
    DOI: 10.3788/LOP232465 Cite this Article Set citation alerts
    Zhijuan Sun, Dongdong Han, Yonglai Zhang. China's Top 10 Optical Breakthroughs: Research Progress of Tunable Microlens Arrays (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1000002 Copy Citation Text show less
    References

    [1] Mukaida M, Yan J W. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo[J]. International Journal of Machine Tools and Manufacture, 115, 2-14(2017).

    [2] Zhang L, Naples N J, Zhou W C et al. Fabrication of infrared hexagonal microlens array by novel diamond turning method and precision glass molding[J]. Journal of Micromechanics and Microengineering, 29, 065004(2019).

    [3] Huang W H, Nagayama K, Yan J W. Fabrication of microlens arrays on single-crystal CaF2 by ultraprecision diamond turning[J]. Journal of Materials Processing Technology, 321, 118133(2023).

    [4] Peng L N, Sheng B, Wang D et al. Soft mold of microlens arrays fabricated by surface self-assembly[J]. Optical Materials, 99, 109602(2020).

    [5] Xu R Z, Zhou T F, Cheung R. Fabrication of SiC concave microlens array mold based on microspheres self-assembly[J]. Microelectronic Engineering, 236, 111481(2021).

    [6] Xu M, Li S H, Li J et al. Fabrication of a bionic compound eye on a curved surface by using a self-assembly technique[J]. Optics Express, 30, 30750-30759(2022).

    [7] Yang B, Zhou J Y. Fabrication of a high-fill-factor microlens array using different thermal reflow process[J]. Proceedings of SPIE, 11052, 110521J(2019).

    [8] Gong S S, Qiu J F, Li M J. A facile method for fabricating microlens array with diverse morphologies at general thermal reflow conditions[J]. Japanese Journal of Applied Physics, 61, 100902(2022).

    [9] Xiong H, Wang L J, Wang Z Y. Chalcogenide microlens arrays fabricated using hot embossing with soft PDMS stamps[J]. Journal of Non-Crystalline Solids, 521, 119542(2019).

    [10] Li L H, Zhou J. Evaluation of warpage and residual stress of precision glass micro-optics heated by carbide-bonded graphene coating in hot embossing process[J]. Nanomaterials, 11, 363(2021).

    [11] Li J Z, Gong F, Wang X et al. Study on filling capacity of optical glass in a novel rapid hot embossing process[J]. Applied Sciences, 12, 3404(2022).

    [12] Liu X Q, Yu L, Chen Q D et al. Sapphire concave microlens arrays for high-fluence pulsed laser homogenization[J]. IEEE Photonics Technology Letters, 31, 1615-1618(2019).

    [13] Qin B, Li X W, Yao Z L et al. Fabrication of microlenses with continuously variable numerical aperture through a temporally shaped femtosecond laser[J]. Optics Express, 29, 4596-4606(2021).

    [14] Zhang B, Wang Z, Tan D Z et al. Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications[J]. PhotoniX, 4, 24(2023).

    [15] Zhu X Y, Xu Q, Hu Y J et al. Flexible biconvex microlens array fabrication using combined inkjet-printing and imprint-lithography method[J]. Optics & Laser Technology, 115, 118-124(2019).

    [16] Magazine R, van Bochove B, Borandeh S et al. 3D inkjet-printing of photo-crosslinkable resins for microlens fabrication[J]. Additive Manufacturing, 50, 102534(2022).

    [17] Zhou T F, Xu R Z, Ruan B S et al. Study on new method and mechanism of microcutting-etching of microlens array on 6H-SiC mold by combining single point diamond turning with ion beam etching[J]. Journal of Materials Processing Technology, 278, 116510(2020).

    [18] Zhang Q S, Schambach M, Schlisske S et al. Fabrication of microlens arrays with high quality and high fill factor by inkjet printing[J]. Advanced Optical Materials, 10, 2200677(2022).

    [19] Liu X Q, Yang S N, Yu L et al. Rapid engraving of artificial compound eyes from curved sapphire substrate[J]. Advanced Functional Materials, 29, 1900037(2019).

    [20] Bae S I, Kim K, Yang S et al. Multifocal microlens arrays using multilayer photolithography[J]. Optics Express, 28, 9082-9088(2020).

    [21] Luan S Y, Cao H, Deng H F et al. Artificial hyper compound eyes enable variable-focus imaging on both curved and flat surfaces[J]. ACS Applied Materials & Interfaces, 14, 46112-46121(2022).

    [22] Li J, Ha N S, Liu T L et al. Ionic-surfactant-mediated electro-dewetting for digital microfluidics[J]. Nature, 572, 507-510(2019).

    [23] Li X M, Tian H M, Shao J Y et al. Decreasing the saturated contact angle in electrowetting-on-dielectrics by controlling the charge trapping at liquid-solid interfaces[J]. Advanced Functional Materials, 26, 2994-3002(2016).

    [24] Zhao P P, Li Y, Zappe H. Accelerated electrowetting-based tunable fluidic lenses[J]. Optics Express, 29, 15733-15746(2021).

    [25] Wang D Y, Hu D G, Zhou Y W et al. Design and fabrication of a focus-tunable liquid cylindrical lens based on electrowetting[J]. Optics Express, 30, 47430-47439(2022).

    [26] Van Grinsven K L, Ousati Ashtiani A, Jiang H R. Flexible electrowetting-on-dielectric microlens array sheet[J]. Micromachines, 10, 464(2019).

    [27] Lü G W, Tian H M, Shao J Y et al. Facile fabrication of flexible concave microlens arrays with a well-controlled curvature[J]. Materials Chemistry Frontiers, 5, 7759-7766(2021).

    [28] Zhong Y, Yu H B, Zhou P L et al. In situ electrohydrodynamic jet printing-based fabrication of tunable microlens arrays[J]. ACS Applied Materials & Interfaces, 13, 39550-39560(2021).

    [29] Zhou G M, Yang A K, Wang Y F et al. Electrotunable liquid sulfur microdroplets[J]. Nature Communications, 11, 606(2020).

    [30] Guo K, Peng K, Wang W F et al. Optical film liquid variable focus microlens array[J]. Infrared and Laser Engineering, 51, 20210958(2022).

    [31] Zhang Z G, Chu F Q, Wang X et al. Microfluidic fabrication of a PDMS microlens for imaging tunability[J]. Langmuir, 38, 4059-4064(2022).

    [32] Chang C Y, Yang S Y, Huang L S et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Physics & Technology, 48, 163-173(2006).

    [33] Hocheng H, Wen T T, Yang S Y. Replication of microlens arrays by gas-assisted hot embossing[J]. Materials and Manufacturing Processes, 23, 261-268(2008).

    [34] Choi S T, Son B S, Seo G W et al. Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses[J]. Optics Express, 22, 6133-6146(2014).

    [35] Cao J J, Hou Z S, Tian Z N et al. Bioinspired zoom compound eyes enable variable-focus lmaging[J]. ACS Applied Materials & Interfaces, 12, 10107-10117(2020).

    [36] Li J, Wang W J, Fu Z L et al. Fabrication of a dual-focus artificial compound eye with improved imaging based on modified microprinting and air-assisted deformation[J]. Applied Optics, 62, D125-D130(2023).

    [37] Wang J H, Tang W P, Li L Y et al. Hybrid driving variable-focus optofluidic lens[J]. Optics Express, 27, 35203-35215(2019).

    [38] Lu T Q, Ma C, Wang T J. Mechanics of dielectric elastomer structures: a review[J]. Extreme Mechanics Letters, 38, 100752(2020).

    [39] Koetting M C, Peters J T, Steichen S D et al. Stimulus-responsive hydrogels: theory, modern advances, and applications[J]. Materials Science and Engineering: R: Reports, 93, 1-49(2015).

    [40] Dayyoub T, Maksimkin A V, Filippova O V et al. Shape memory polymers as smart materials: a review[J]. Polymers, 14, 3511(2022).

    [41] Sun Y L, Dong W F, Yang R Z et al. Dynamically tunable protein microlenses[J]. Angewandte Chemie International Edition, 51, 1558-1562(2012).

    [42] Ma Z C, Hu X Y, Zhang Y L et al. Smart compound eyes enable tunable imaging[J]. Advanced Functional Materials, 29, 1903340(2019).

    [43] Lan C P, Zhou Z W, Ren H W et al. Fast-response microlens array fabricated using polyvinyl chloride gel[J]. Journal of Molecular Liquids, 283, 155-159(2019).

    [44] Bae J W, Choi D S, Yun I H et al. Electrically adaptive and shape-changeable invertible microlens[J]. ACS Applied Materials & Interfaces, 13, 10397-10408(2021).

    [45] Yoon J U, Han D H, Oh S J et al. Electro-reconfigurable adaptive microlens with simultaneous multidirectional focal adjustment and zooming[J]. Advanced Materials Technologies, 8, 2201988(2023).

    [46] Jiang W, Liu H Z, Zhu S Y et al. Efficient electrothermal actuation of liquid microlens arrays with low voltages[J]. RSC Advances, 6, 102149-102154(2016).

    [47] Gu T K, Liu H Z, Wang L L et al. Varifocal liquid microlens in scaffold microstructures under electrothermal actuation[J]. Sensors and Actuators A: Physical, 341, 113584(2022).

    [48] Jiang W, Liu H Z, Li R et al. Tunable liquid microlens arrays actuated by infrared light-responsive graphene microsheets[J]. Journal of Micromechanics and Microengineering, 27, 085006(2017).

    [49] Wang L L, Li R, Peng N M et al. ITO-activated reconfigurable micro-lens array for dynamic reversible focusing and collimation[J]. Sensors and Actuators A: Physical, 347, 113879(2022).

    [50] Zhang W, Li H, Zou Y C et al. Design and fabrication of a tunable optofluidic microlens driven by an encircled thermo-pneumatic actuator[J]. Micromachines, 13, 1189(2022).

    [51] Wu W T, Liang Z C, Zhang L. Optofluidic varifocal microlens[J]. Chinese Journal of Luminescence, 36, 718-723(2015).

    [52] Chen Q M, Li T H, Li Z H et al. Optofluidic tunable lenses for in-plane light manipulation[J]. Micromachines, 9, 97(2018).

    [53] Hu Y L, Rao S L, Wu S Z et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching[J]. Advanced Optical Materials, 6, 1701299(2018).

    [54] Zhong Y, Yu H B, Wen Y D et al. Novel optofluidic imaging system integrated with tunable microlens arrays[J]. ACS Applied Materials & Interfaces, 15, 11994-12004(2023).

    [55] Liang L, Hu X J, Shi Y et al. Tunable and dynamic optofluidic microlens arrays based on droplets[J]. Analytical Chemistry, 94, 14938-14946(2022).

    [56] Chen X X, Li H, Wu T L et al. Optical-force-controlled red-blood-cell microlenses for subwavelength trapping and imaging[J]. Biomedical Optics Express, 13, 2995-3004(2022).

    [57] Chen X X, Wu T L, Gong Z Y et al. Lipid droplets as endogenous intracellular microlenses[J]. Light, Science & Applications, 10, 242(2021).

    [58] Li H, Chen X X, Zhang Y et al. Chloroplast optical microlens with variable focus[J]. Acta Optica Sinica, 42, 0411003(2022).

    [59] Ruiz U, Provenzano C, Pagliusi P et al. Single-step polarization holographic method for programmable microlens arrays[J]. Optics Letters, 37, 4958-4960(2012).

    [60] Wu D, Wang J N, Niu L G et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2, 751-758(2014).

    [61] Jürgensen N, Fritz B, Mertens A et al. A single-step hot embossing process for integration of microlens arrays in biodegradable substrates for improved light extraction of light-emitting devices[J]. Advanced Materials Technologies, 6, 1900933(2021).

    [62] Xu S, Li Y, Liu Y F et al. Fast-response liquid crystal microlens[J]. Micromachines, 5, 300-324(2014).

    [63] Kamal W, Lin J D, Elston S J et al. Electrically tunable printed bifocal liquid crystal microlens arrays[J]. Advanced Materials Interfaces, 7, 2000578(2020).

    [64] Wu J B, Wu S B, Cao H M et al. Electrically tunable microlens array enabled by polymer-stabilized smectic hierarchical architectures[J]. Advanced Optical Materials, 10, 2201015(2022).

    [65] Perera K, Nemati A, Mann E K et al. Converging microlens array using nematic liquid crystals doped with chiral nanoparticles[J]. ACS Applied Materials & Interfaces, 13, 4574-4582(2021).

    [66] Xu M, Zhang L D, Bian Z Y et al. Electrically controllable liquid crystal paraxial Fresnel zone plate based on concentric zones patterned electrode[J]. Optics & Laser Technology, 163, 109348(2023).

    [67] He Z Q, Lee Y H, Chanda D et al. Adaptive liquid crystal microlens array enabled by two-photon polymerization[J]. Optics Express, 26, 21184-21193(2018).

    [68] He Z Q, Lee Y H, Chen R et al. Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment[J]. Optics Letters, 43, 5062-5065(2018).

    [69] Li T, Chen C, Xiao X J et al. Revolutionary meta-imaging: from superlens to metalens[J]. Photonics Insights, 2, R01(2023).

    [70] Li R, Zhang H L, Chu F et al. Compact integral imaging 2D/3D compatible display based on liquid crystal micro-lens array[J]. Liquid Crystals, 49, 512-522(2022).

    [71] Zhang M, Dong P, Wang Y et al. Tunable terahertz wavefront modulation based on phase change materials embedded in metasurface[J]. Nanomaterials, 12, 3592(2022).

    [72] Zhang D Q, Pan G M, Jin Z W et al. Tunable dielectric metasurfaces by structuring the phase-change material[J]. Optics Express, 30, 4312-4326(2022).

    [73] Ou X N, Zeng T B, Zhang Y et al. Tunable polarization-multiplexed achromatic dielectric metalens[J]. Nano Letters, 22, 10049-10056(2022).

    [74] Lin P, Lin Y S, Lin J et al. Stretchable metalens with tunable focal length and achromatic characteristics[J]. Results in Physics, 31, 105005(2021).

    [75] Arbabi E, Arbabi A, Kamali S M et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 9, 812(2018).

    [76] Zhao P P, Sauter D, Zappe H. Tunable fluidic lens with a dynamic high-order aberration control[J]. Applied Optics, 60, 5302-5311(2021).

    [77] Pan Z D, Su X Q, Zhou Y et al. Dynamic aberrations of scanning imaging system with cascaded microlens arrays[J]. Acta Optica Sinica, 43, 1911002(2023).

    [78] Hsieh P Y, Chou P Y, Lin H A et al. Long working range light field microscope with fast scanning multifocal liquid crystal microlens array[J]. Optics Express, 26, 10981-10996(2018).

    [79] Li H, Shao Y H, Wang Y et al. Spectrally resolved multifocal multiphoton microscopy using microlens array and galvo mirror scanning[J]. Chinese Journal of Lasers, 37, 1240-1244(2010).

    [80] Zhang S, Sheng H, Yang D et al. Micro-lens-based matching for scene recovery in lenslet cameras[J]. IEEE Transactions on Image Processing, 27, 1060-1075(2018).

    [81] Chen M C, He W D, Wei D et al. Depth-of-field-extended plenoptic camera based on tunable multi-focus liquid-crystal microlens array[J]. Sensors, 20, 4142(2020).

    [82] Chen M C, Li Z X, Ye M et al. All-in-focus polarimetric imaging based on an integrated plenoptic camera with a key electrically tunable LC device[J]. Micromachines, 13, 192(2022).

    [83] Urner T M, Inman A, Lapid B et al. Three-dimensional light-field microendoscopy with a GRIN lens array[J]. Biomedical Optics Express, 13, 590-607(2022).

    [84] Zeng X F, Smith C T, Gould J C et al. Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light[J]. Journal of Microelectromechanical Systems, 20, 583-593(2011).

    [85] Kwon J M, Bae S I, Kim T et al. Solid immersion microlens arrays-based light-field camera for 3D in vivo imaging[EB/OL]. http://arxiv.org/abs/2203.09684

    [86] Peng Y Y, Zhou X T, Zhang Y A et al. Fabrication of a micro-lens array for improving depth-of-field of integral imaging 3D display[J]. Applied Optics, 59, 9104-9107(2020).

    [87] Zhao N Q, Liu J, Zhao Z F. High performance integral imaging 3D display using quarter-overlapped microlens arrays[J]. Optics Letters, 46, 4240-4243(2021).

    [88] Xu M, Xue Y Y, Li J et al. Large-area and rapid fabrication of a microlens array on a flexible substrate for an integral imaging 3D display[J]. ACS Applied Materials & Interfaces, 15, 10219-10227(2023).

    [89] Yu W T, Zhang H L, Deng H et al. Augmented reality three-dimensional display system based on holographic optical element[J]. Chinese Journal of Lasers, 43, 1009001(2016).

    [90] Tian L L, Chu F, Zhao W X et al. Fast responsive 2D/3D switchable display using a liquid crystal microlens array[J]. Optics Letters, 46, 5870-5873(2021).

    [91] Li Q, Zhong F Y, Deng H et al. Depth-enhanced 2D/3D switchable integral imaging display by using n-layer focusing control units[J]. Liquid Crystals, 49, 1367-1375(2022).

    [92] Tian L L, Chu F, Zhang Y X et al. Switchable 2D/3D display based on a liquid crystal lens array and the rotating specimen shooting method[J]. Optics Letters, 47, 3664-3667(2022).

    [93] Sim J H, Kim J, Kim C et al. Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display[J]. Scientific Reports, 8, 15416(2018).

    [94] Yuan R Y, Ma X L, Chu F et al. Optofluidic lenticular lens array for a 2D/3D switchable display[J]. Optics Express, 29, 37418-37428(2021).

    Zhijuan Sun, Dongdong Han, Yonglai Zhang. China's Top 10 Optical Breakthroughs: Research Progress of Tunable Microlens Arrays (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1000002
    Download Citation