• Journal of Inorganic Materials
  • Vol. 38, Issue 2, 125 (2023)
Jingjing FENG*, Youran ZHANG, Mingsheng MA, Yiqing LU, and Zhifu LIU
DOI: 10.15541/jim20220338 Cite this Article
Jingjing FENG, Youran ZHANG, Mingsheng MA, Yiqing LU, Zhifu LIU. Current Status and Development Trend of Cold Sintering Process[J]. Journal of Inorganic Materials, 2023, 38(2): 125 Copy Citation Text show less
Quaternary diagram of sintering techniques[13]
. Quaternary diagram of sintering techniques[13]
Schematic diagram of densification mechanism of CSP[20,38]
. Schematic diagram of densification mechanism of CSP[20,38]
SEM images of Li2MoO4 before and after cold sintering[20]
. SEM images of Li2MoO4 before and after cold sintering[20]
SEM images of cold sintered ZnO ceramics with different solvents[54]
. SEM images of cold sintered ZnO ceramics with different solvents[54]
Cold sintered BaTiO3 ceramics obtained by holding at 300 ℃ for 12 h[56]
. Cold sintered BaTiO3 ceramics obtained by holding at 300 ℃ for 12 h[56]
Cold sintered BaTiO3 ceramics obtained by holding at 150 ℃ for 15 h[57]
. Cold sintered BaTiO3 ceramics obtained by holding at 150 ℃ for 15 h[57]
Schematic diagrams of ceramic-polymer composites[34]
. Schematic diagrams of ceramic-polymer composites[34]
Electrical properties of three composites prepared by cold sintering process[19]
. Electrical properties of three composites prepared by cold sintering process[19]
Cold sintered ZnO-PTFE composites[62]
. Cold sintered ZnO-PTFE composites[62]
Cold sintered BaTiO3-PTFE composites[57]
. Cold sintered BaTiO3-PTFE composites[57]
Cold sintered ZnO and LAGP ceramic samples with large size[69]
. Cold sintered ZnO and LAGP ceramic samples with large size[69]
Obvious inhomogeneity of cold sintered ZnO ceramics[69]
. Obvious inhomogeneity of cold sintered ZnO ceramics[69]
Reactive hydrothermal liquid phase densification process[72]
. Reactive hydrothermal liquid phase densification process[72]
TechniqueName (Abbreviation)Definition
TraditionalsinteringConventional sintering (ConvS)Thermal sintering at heating rate of 1-10 ℃/min
Two step sintering (TSS)Thermal sintering divided in two steps (heating; cooling and densification)
Fast firing (FF)Rapid sintering with short soaking times and high heating rates
Sinter forging (SF)Sintering in presence of uniaxial pressure in die-less configuration
Hot pressing (HP)Sintering at high temperature and in presence of uniaxial pressure
Hydrothermal hot pressing (HIP)Sintering at high temperature and in presence of hydrostatic pressure
Liquid phase sinteringCold sintering process (CSP)Sintering at T<400 ℃ in presence of solvent and uniaxial pressure
Cold hydrostatic consolidation (CHC)Sintering at room temperature in presence of solvent and hydrostatic pressure
Hydrothermal hot pressing (HHP)Pressure-assisted sintering in hydrothermal conditions
Hydrothermal reaction sintering (HRS)Sintering of oxide ceramics in presence of supercritical water
Water vapor-assisted sintering (WVAS)Conventional sintering in a humid atmosphere
Reactive hydrothermal liquid-phase densification (rHLPD)Sintering at low temperature assisted by hydrothermal reaction
Flash-likeFlash sintering (FS)Rapid sintering at low furnace temperature in presence of electric field
Thermally insulated flash sintering (TIFS)Flash sintering where the sample is thermally insulated from the environment
Flash sinterforging (FSF)Flash sintering in presence of uniaxial pressure in die-less configuration
Sliding electrodes flash sintering (SEFS)Flash sintering where the electrodes are in relative motion with respect to the sample
Water-assisted flash sintering (WAFS)Flash sintering in humid atmosphere
Contactless flash sintering (CLFS)Flash sintering with electrodes in non-contact mode
SPS-likeSpark plasma sintering (SPS)Sintering in presence of a DC electric potential and uniaxial pressure
Deformable punch spark plasma sintering (DPSPS)Spark plasma sintering at very high pressure (1000-2000 MPa)
Flash spark plasma sintering (FSPS)Hybrid technique of flash sintering and spark plasma sintering
Cool spark plasma sintering (CSPS)Spark plasma sintering at T<400 ℃ and high pressure (300-600 MPa)
High pressure spark plasma sintering (HPSPS)Spark plasma sintering at high pressure (102-103 MPa)
Sacrificial material spark plasma sintering (SMPS)Spark plasma sintering with a sacrificial die to form samples with complex shapes
OthersUltrafast high-temperature sintering (UHS)Rapid sintering at heating rate of 103-104 ℃/min
Cold sintering (CS)Sintering of ductile materials at high pressure and low temperature
Microwave sintering (MWS)Densification assisted by heating with an electromagnetic radiation
Induction sintering (IS)Densification assisted by heating with an induction system
Capacitor discharge sintering (CDS)Rapid sintering with electric energy supplied by capacitor discharge
Table 1. Definition table of sintering techniques[13-14]
Binary compound Ternary compound Quaternary compound Quinary compound
MoO3Li2CO3LiFePO4LiAl0.5Ge1.5(PO4)3
WO3CsSO4LiCoPO4Li0.5xBi1-0.5xMoxV1-xO4
V2O3Li2MoO4KH2PO4(Bi0.95Li0.05)(V0.9Mo0.1)O4
V2O5Na2Mo2O7Ca5(PO4)3(OH)Li1.5Al0.5Ge1.5(PO4)3
ZnOK2Mo2O7(LiBi)0.5MoO4-
Bi2O3ZnMoO4CsH2PO4-
Fe2O3K2MoO4InGaZnO4-
SiO2Bi2Mo2O9K0.5Na0.5NbO3-
CsBrGd2(MoO4)3LiFePO4-
MgOLi2WO4Li2Mg3TiO6-
PbTeNa2WO4Na0.5Bi0.5MoO4-
Bi2Te3LiVO3Na0.5Bi0.5TiO3-
NaClBiVO4YBa2Cu3O7-x-
ZnTeAgVO3--
AgINa2ZrO3--
CuClBaTiO3--
ZrF4NaNO2--
ZrO2Mg2P2O7--
Al2O3BaMoO4--
CeO2Cs2WO4--
MnONaxCO2O4--
SnOCa3Co4O9--
TiO2KPO3--
MoS2Al2SiO5--
-Ca3Co4O9--
-CaCO3--
-BaFe12O19--
-ZrW2O8--
-NaNbO3--
-SrTiO3--
Table 2. Ceramic materials prepared by CSP[29,38,50]
Ceramic-polymer compositeSolventProcessing conditionsRelative densityApplicationRef.
Li2MoO4-PTFEDeionized (DI) water120 ℃, 350 MPa, 15-20 min96%-97%Dielectrics[19]
Li1.5Al0.5Ge1.5(PO4)3/PVDF-HFPDI water120 ℃, 400 MPa, 60 min80%-86%Li-ion battery electrolytes[19]
V2O5-PEDOT:PSSDI water120 ℃, 350 MPa, 20-30 min91%-93%Negative-temperature-resistance sensors[19,58]
(LiBi)0.5MoO4-PTFEDI water120 ℃, 250-350 MPa, 20 min>85%Dielectrics[21]
Na2Mo2O7-PEIDI water120 ℃, 175-350 MPa, 20 min>90%Dielectrics[59]
SiO2-PTFETEOS/NaOH270 ℃, 430 MPa, 60 min90%-99%Dielectrics[60]
BaTiO3-PTFEBa(OH)2·8H2O225 ℃, 350 MPa, 120 min>90%Dielectrics[61]
ZnO-PTFEAcetic acid300 ℃, 350 MPa, 30 min93%-99%Varistors[62]
LiFePO4-C-PVDFLiOH240 ℃, 30-750 MPa, 30 min89%Li-ion electrodes[63]
NaNbO3-PVDFDI water180 ℃, 550 MPa, 10 min97%Dielectrics[64]
ZnO-PEEKAcetic acid330 ℃, 300 MPa, 120 min>98%Varistors[65-66]
ZnO-PDMSAcetic acid250 ℃, 320 MPa, 60 min>90%Varistors[67]
ZnO/PVDF-TrFEAcetic acid140 ℃, 300 MPa, 240 min>95%Varistors[68]
ZnO-PEI-Mn2O3-CoOAcetic acid150 ℃, 27 MPa, 60 min88%Varistors[69]
LiFePO4-Li6.95Mg0.15La2.75Sr0.25Zr2O12-PPC-LiClO4DMF100-140℃, 400 MPa, 90-180 min>85%Li-ion battery electrolytes[70]
Table 3. Composites prepared by CSP
Jingjing FENG, Youran ZHANG, Mingsheng MA, Yiqing LU, Zhifu LIU. Current Status and Development Trend of Cold Sintering Process[J]. Journal of Inorganic Materials, 2023, 38(2): 125
Download Citation