• Laser & Optoelectronics Progress
  • Vol. 56, Issue 13, 130002 (2019)
Jingjing Meng1,2,3, Jin Yu2,3,*, Zeqiang Mo1,2,3, Jinduo Wang1,2,3..., Shoujun Dai1,2,3 and Xiaodong Wang1,2,3|Show fewer author(s)
Author Affiliations
  • 1 Key Laboratory of Computational Optical Imaging Technology, Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China
  • 2 Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China
  • 3 University of Chinese Academy of Science, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP56.130002 Cite this Article Set citation alerts
    Jingjing Meng, Jin Yu, Zeqiang Mo, Jinduo Wang, Shoujun Dai, Xiaodong Wang. Laser Space Shaping Based on Beam Integration[J]. Laser & Optoelectronics Progress, 2019, 56(13): 130002 Copy Citation Text show less
    References

    [1] Dickey F, Lizotte T[M]. Laser beam shaping applications, 16-18(2017).

    [2] Li Y M, Gong L, Li D et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 42, 0101001(2015).

    [3] Guo Z H, Liu Z T, Chen Q M et al. Application and progress of laser shaping devices in optical tweezers[J]. Laser & Optoelectronics Progress, 54, 090004(2017).

    [4] Oliker V, Doskolovich L L, Bykov D A. Beam shaping with a plano-freeform lens pair[J]. Optics Express, 26, 19406-19419(2018). http://8.18.37.105/abstract.cfm?uri=oe-26-15-19406

    [5] Yang Z K, Ma X H, Fang J Y et al. Tunable bottle beam of semiconductor laser[J]. Chinese Journal of Lasers, 45, 1105001(2018).

    [6] Yang X T, Fan W. Spatial laser beam shaping using birefringent lenses[J]. Acta Optica Sinica, 26, 1698-1704(2006).

    [7] Veldkamp W B. Laser beam profile shaping with binary diffraction gratings[J]. Optics Communications, 38, 381-386(1981). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-21-17-3209

    [8] Hajj B, Oudjedi L, Fiche J B et al. Highly efficient multicolor multifocus microscopy by optimal design of diffraction binary gratings[J]. Scientific Reports, 7, 5284(2017). http://europepmc.org/abstract/MED/28706216

    [9] Yamaguchi S, Kobayashi T, Saito Y et al. Collimation of emissions from a high-power multistripe laser-diode bar with multiprism array coupling and focusing to a small spot[J]. Optics Letters, 20, 898-900(1995). http://www.ncbi.nlm.nih.gov/pubmed/19859367

    [10] Yamaguchi S, Imai H. Efficient Nd∶YAG laser end-pumped by a 1 cm aperture laser-diode bar with a GRIN lens array coupling[J]. IEEE Journal of Quantum Electronics, 28, 1101-1105(1992). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=135233

    [11] Zheng G X, Du C L, Zhou C et al. Laser diode stack beam shaping by reflective two-wedge-angle prism arrays[J]. Optical Engineering, 44, 044203(2005). http://spie.org/Publications/Journal/10.1117/1.1883240

    [12] Huang Z H, Xiong L L, Liu H et al. Double-cutting beam shaping technique for high-power diode laser area light source[J]. Optical Engineering, 52, 106108(2013). http://spie.org/x648.xml?product_id=2051440

    [13] Wu Y L, Dong Z Y, Chen Y Q et al. Beam shaping for kilowatt fiber-coupled diode lasers by using one-step beam cutting-rotating of prisms[J]. Applied Optics, 55, 9769-9773(2016). http://europepmc.org/abstract/MED/27958469

    [14] Shi Z D, Fang L, Fan B et al. Beam shaping system based on a prism array for improving the throughput of a dispersive spectrometer[J]. Applied Optics, 54, 2715-2719(2015). http://europepmc.org/abstract/med/25967181

    [15] Kagoshima Y, Takano H, Takeda S. Constant-pitch microprism-array optical device for beam condensers in hard X-ray synchrotron radiation beamlines[J]. Journal of Applied Physics, 113, 214314(2013). http://scitation.aip.org/content/aip/journal/jap/113/21/10.1063/1.4809560

    [16] Zheng C, Li Q Y, Rosengarten G et al. Compact, semi-passive beam steering prism array for solar concentrators[J]. Applied Optics, 56, 4158-4167(2017). http://www.ncbi.nlm.nih.gov/pubmed/29047549

    [17] Tsuji H, Nakano T, Matsumoto Y et al. Flattop beam illumination for 3D imaging ladar with simple optical devices in the wide distance range[J]. Optical Review, 23, 155-160(2016). http://link.springer.com/article/10.1007/s10043-016-0194-x

    [18] Zhou X F, Qi Z M, Luo X Q et al. A method to diverge reflected beam uniformly using cube-corner retroreflector array with dihedral angle tolerances[J]. Acta Physica Sinica, 66, 084201(2017).

    [19] Doherty V J. Design of mirrors with segmented conical surfaces tangent to a discontinuous aspheric base[J]. Proceedings of SPIE, 399, 263-271(1983). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1235294

    [20] David S R, Walker T, Cassarly W J. Faceted reflector design for uniform illumination[J]. Proceedings of SPIE, 3842, 437-446(1998). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=961310

    [21] Cassarly W J, David S R, Jenkins D G et al. Automated design of a uniform distribution using faceted reflectors[J]. Optical Engineering, 39, 1830-1839(2000). http://adsabs.harvard.edu/abs/2000opten..39.1830c

    [22] Dagenais D M, Woodroffe J A, Itzkan I. Optical beam shaping of a high power laser for uniform target illumination[J]. Applied Optics, 24, 671-675(1985). http://www.opticsinfobase.org/ao/fulltext.cfm?uri=ao-24-5-671

    [23] Ehlers B, Du K M, Baumann M et al. Beam shaping and fiber coupling of high-power diode laser arrays[J]. Proceedings of SPIE, 3097, 639-644(1997). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=928130

    [24] Hornbeck L J. Digital light processing for high-brightness high-resolution applications[J]. Proceedings of SPIE, 3013, 27-40(1997). http://spie.org/Publications/Proceedings/Paper/10.1117/12.273880

    [25] Ren Y X, Lu R D, Gong L. Tailoring light with a digital micromirror device[J]. Annalen Der Physik, 527, 447-470(2015). http://onlinelibrary.wiley.com/doi/10.1002/andp.201500111/pdf

    [26] Liang J Y, Kohn R N, Becker M F et al. 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator[J]. Applied Optics, 48, 1955-1962(2009).

    [27] Liang J Y, Wu S Y, Kohn R N et al. Bandwidth-limited laser image projection using a DMD-based beam shaper[J]. Proceedings of SPIE, 8254, 82540M(2012). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1262925

    [28] Ding X Y, Ren Y X, Lu R D. Shaping super-Gaussian beam through digital micro-mirror device[J]. Science China Physics, Mechanics & Astronomy, 58, 1-6(2015). http://link.springer.com/article/10.1007/s11433-014-5499-9

    [29] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. Journal of the Optical Society of America A, 4, 651-654(1987). http://www.opticsinfobase.org/abstract.cfm?uri=josaa-4-4-651

    [30] Zeng J, Chen Y H, Liu X L et al. Research progress on partially coherent vortex beams[J]. Acta Optica Sinica, 39, 0126004(2019).

    [31] Gong L, Liu W W, Zhao Q et al. Controllable light capsules employing modified Bessel-Gauss beams[J]. Scientific Reports, 6, 29001(2016). http://www.nature.com/articles/srep29001

    [32] Ren Y X, Fang Z X, Lu R D. Shaping non-diffracting beams with a digital micromirror device[J]. Proceedings of SPIE, 9761, 97610O(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2505020

    [33] Lakner H K, Duerr P, Dauderstaedt U et al. Design and fabrication of micromirror arrays for UV lithography[J]. Proceedings of SPIE, 4561, 255-264(2001). http://spie.org/Publications/Proceedings/Paper/10.1117/12.443094

    [34] Mulder M, Engelen A, Noordman O et al. Performance of FlexRay: a fully programmable illumination system for generation of freeform sources on high NA immersion systems[J]. Proceedings of SPIE, 7640, 76401P(2010). http://www.spie.org/x648.xml?product_id=845984

    [35] Mulder M, Engelen A, Noordman O et al. Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems[J]. Proceedings of SPIE, 7520, 75200Y(2009). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=775388

    [36] McIntyre G, Corliss D, Groenendijk R et al. . Qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator[J]. Proceedings of SPIE, 7973, 797306(2011). http://spie.org/Publications/Proceedings/Paper/10.1117/12.879483

    [37] Xing S S, Ran Y H, Jiang H B et al. Illumination mode conversion system design based on micromirror array in lithography[J]. Acta Optica Sinica, 35, 1111002(2015).

    [38] Du M, Xing T W, Yuan J H et al. Application of micromirror array in beam shaping[J]. Infrared and Laser Engineering, 43, 1210-1214(2014).

    [39] Mitchell K J, Turtaev S, Padgett M J et al. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device[J]. Optics Express, 24, 29269-29282(2016). http://www.ncbi.nlm.nih.gov/pubmed/27958587

    [40] Roth M, Heber J, Janschek K. Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks[J]. Optics Letters, 43, 2860-2863(2018). http://europepmc.org/abstract/MED/29905708

    [41] Jia W W, Wang Y F, Huang F et al. Application of fly's eye lens in beam shaping laser diode array[J]. Chinese Journal of Lasers, 38, 0202008(2011).

    [42] Qiao B, Jiang P, Yang H J et al. The elliptical micro-lens array in the application of the LDA beam shaping[J]. Optik, 125, 7149-7153(2014). http://www.sciencedirect.com/science/article/pii/S0030402614011383

    [43] Lin J, Xu L X, Wang S B et al. Theoretical analysis of lens array for uniform irradiation on target in multimode fiber lasers[J]. Chinese Optics Letters, 12, 101402(2014). http://www.opticsjournal.net/Articles/Abstract?aid=OJ140928000035VrYu2x

    [44] Dickey F, Lizotte T[M]. Laser beam shaping: theory and techniques, 281-282(2017).

    [45] Büttner A, Zeitner U D. Wave optical analysis of light-emitting diode beam shaping using microlens arrays[J]. Optical Engineering, 41, 2393-2400(2002). http://onlinelibrary.wiley.com/resolve/reference/ADS?id=2002OptEn..41.2393B

    [46] Lim C S, Hong M H, Senthil Kumar A et al. Study of field intensity distribution of laser beam propagating through a micro-lens array[J]. Applied Physics A, 107, 149-153(2012). http://link.springer.com/article/10.1007/s00339-012-6776-y

    [47] Yin Z Y, Wang Y F, Yin S Y et al. Impact of microlens changes on the homogenization effect of semiconductor laser beam[J]. High Power Laser and Particle Beams, 25, 2556-2560(2013).

    [48] Schreiber P, Kudaev S, Dannberg P et al. Homogeneous LED-illumination using microlens arrays[J]. Proceedings of SPIE, 5942, 59420K(2005). http://spie.org/Publications/Proceedings/Paper/10.1117/12.618747

    [49] Wang Z X, Zhu G Z, Huang Y et al. Analytical model of microlens array system homogenizer[J]. Optics & Laser Technology, 75, 214-220(2015). http://www.sciencedirect.com/science/article/pii/S0030399215001942

    [50] Wippermann F, Zeitner U D, Dannberg P et al. Beam homogenizers based on chirped microlens arrays[J]. Optics Express, 15, 6218-6231(2007). http://www.ncbi.nlm.nih.gov/pubmed/19546927

    [51] Deng Z F, Yang Q, Chen F et al. High-performance laser beam homogenizer based on double-sided concave microlens[J]. IEEE Photonics Technology Letters, 26, 2086-2089(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6881666

    [52] Yao P H, Chen C H, Chen C H. Low speckle laser illuminated projection system with a vibrating diffractive beam shaper[J]. Optics Express, 20, 16552-16566(2012). http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-15-16552

    [53] Chen E G, Huang J M, Guo T L et al. A laser beam shaper for homogeneous rectangular illumination based on freeform micro lens array[J]. Optoelectronics Letters, 12, 253-256(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ171012000605nUqWtZ

    [54] Zhou Z, Lee S H. Fabrication of an improved gray-scale mask for refractive micro- and meso-optics[J]. Optics Letters, 29, 457-458(2004). http://www.ncbi.nlm.nih.gov/pubmed/15005191

    [55] Yang J J, Liao Y S, Chen C F. Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process[J]. Optics Communications, 270, 433-440(2007). http://www.sciencedirect.com/science/article/pii/S0030401806009400

    [56] Zuo H J, Choi D Y, Gai X et al. CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition[J]. Optics Express, 25, 3069-3076(2017). http://www.ncbi.nlm.nih.gov/pubmed/28241523

    [57] Yu W, Yuan X. Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam lithography[J]. Optics Express, 11, 899-903(2003). http://www.ncbi.nlm.nih.gov/pubmed/19461804

    [58] Tseng A A. Recent developments in micromilling using focused ion beam technology[J]. Journal of Micromechanics and Microengineering, 14, R15-R34(2004). http://www.ingentaconnect.com/content/iop/jmm/2004/00000014/00000004/art00r01

    [59] Saito K, Hayashi H, Nishikawa H. Fabrication of curved PDMS microstructures on silica glass by proton beam writing aimed for micro-lens arrays on transparent substrates[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 306, 284-287(2013). http://www.sciencedirect.com/science/article/pii/S0168583X12007938

    [60] Huang S Z, Li M J, Shen L G et al. Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan[J]. Micro & Nano Letters, 12, 49-52(2017). http://ieeexplore.ieee.org/document/7792829/