• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 1, 85 (2023)
Rui CAO1、*, Chengzhi YUAN1, Si SHEN1, Zichang ZHANG1, Yunru FAN1, Jiarui LI1, Hao LI2, Lixing YOU2, Qiang ZHOU1, and Zizhu WANG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.01.010 Cite this Article
    CAO Rui, YUAN Chengzhi, SHEN Si, ZHANG Zichang, FAN Yunru, LI Jiarui, LI Hao, YOU Lixing, ZHOU Qiang, WANG Zizhu. Optimized detection of maximally entangled time-bin qutrits[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 85 Copy Citation Text show less
    References

    [1] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement [J]. Reviews of Modern Physics, 2009, 81(2): 865-942.

    [2] Plenio M B, Virmani S. An introduction to entanglement measures [J]. Quantum Information and Computation, 2007, 7(1&2): 1-51.

    [3] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution [J]. Reviews of Modern Physics, 2009, 81(3): 1301-1350.

    [4] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation [J]. Nature, 1997, 390(6660): 575-579.

    [5] Mattle K, Weinfurter H, Kwiat P G, et al. Dense coding in experimental quantum communication [J]. Physical Review Letters, 1996, 7(25): 4656-4659.

    [6] Bavaresco J, Herrera Valencia N, Klckl C, et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement [J]. Nature Physics, 2018, 14(10): 1032-1037.

    [7] Hu X M, Xing W B, Liu B H, et al. Efficient distribution of high-dimensional entanglement through 11 km fiber [J]. Optica, 2020, 7(7): 738-743.

    [8] Martin A, Guerreiro T, Tiranov A, et al. Quantifying photonic high-dimensional entanglement [J]. Physical Review Letters, 2017, 118(11): 110501.

    [9] Steinlechner F, Ecker S, Fink M, et al. Distribution of high-dimensional entanglement via an intra-city free-space link [J]. Nature Communications, 2017, 8(1): 15971.

    [10] Durt T, Kaszlikowski D, Chen J L, et al. Security of quantum key distributions with entangled qudits [J]. Physical Review A, 2004, 69(3): 032313.

    [11] Ding Y H, Bacco D, Dalgaard K, et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits [J]. NPJ Quantum Information, 2017, 3: 25.

    [12] Zhong T, Zhou H C, Horansky R D, et al. Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding [J]. New Journal of Physics, 2015, 17(2): 022002.

    [13] Wang J W, Paesani S, Ding Y H, et al. Multidimensional quantum entanglement with large-scale integrated optics [J]. Science, 2018, 360(6386): 285-291.

    [14] Schaeff C, Polster R, Huber M, et al. Experimental access to higher-dimensional entangled quantum systems using integrated optics [J]. Optica, 2015, 2(6): 523-529.

    [15] Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication [J]. Physical Review Letters, 2002, 89(24): 240401.

    [16] Kues M, Reimer C, Roztocki P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control [J]. Nature, 2017, 54(7660): 622-626.

    [17] Kulkarni G, Sahu R, Magaa-Loaiza O S, et al. Single-shot measurement of the orbital-angular-momentum spectrum of light [J]. Nature Communications, 2017, 8(1): 1054.

    [18] Thew R T, Acin A, Zbinden H, et al. A Bell-type test of energy-time entangled qutrits [OL]. 2004, arXiv: quant-ph/0402048. https://arxiv.org/abs/quant-ph/0402048.

    [19] Barreiro J T, Langford N K, Peters N A, et al. Generation of hyperentangled photon pairs [J]. Physical Review Letters, 2005, 95(26): 260501.

    [20] Brub D, Cirac J I, Horodecki P, et al. Reflections upon separability and distillability [J]. Journal of Modern Optics, 2002, 49(8): 1399-1418.

    [21] Horodecki M, Horodecki P, Horodecki R. Separability of n-particle mixed states: Necessary and sufficient conditions in terms of linear maps [J]. Physics Letters A, 2001, 283(1/2): 1-7.

    [22] Lewenstein M, Kraus B, Cirac J I, et al. Optimization of entanglement witnesses [J]. Physical Review A, 2000, 62(5): 052310.

    [23] Gühne O, Tóth G. Entanglement detection [J]. Physics Reports, 2009, 474: 1-75.

    [24] Weilenmann M, Dive B, Trillo D, et al. Entanglement detection beyond measuring fidelities [J]. Physical Review Letters, 2020, 124(20): 200502.

    [25] Kraft T, Ritz C, Brunner N, et al. Characterizing genuine multilevel entanglement [J]. Physical Review Letters, 2018, 120(6): 060502.

    [26] Hu X M, Xing W B, Guo Y, et al. Optimized detection of unfaithful high-dimensional entanglement [OL]. 2020, arXiv: 2011.02217, https://arxiv.org/abs/2011.02217.

    [27] Weilenmann M, Aguilar E A, Navascues M. Quantum preparation games [J]. 2020, arXiv: 2011.02216.

    [28] Gühne O, Hyllus P, Bru D, et al. Detection of entanglement with few local measurements [J]. Physical Review A, 2002, 6(6): 062305.

    [29] Hu X M, Zhang C, Liu B H, et al. Experimental high-dimensional quantum teleportation [J]. Physical Review Letters, 2020, 125(23): 230501.

    [30] Luo Y H, Zhong H S, Erhard M, et al. Quantum teleportation in high dimensions [J]. Physical Review Letters, 2019, 123(7): 070505.

    [31] Guo Y, Hu X M, Liu B H, et al. Experimental witness of genuine high-dimensional entanglement [J]. Physical Review A, 2018, 97(6): 062309.

    [32] Zhang Z C, Yuan C Z, Shen S, et al. High-performance quantum entanglement generation via cascaded second-order nonlinear processes [J]. NPJ Quantum Information, 2021, arXiv: 2102.07146.

    [33] Ikuta T, Takesue H. Implementation of quantum state tomography for time-bin qudits [J]. New Journal of Physics, 2017, 19(1): 013039.

    [34] Takesue H, Noguchi Y. Implementation of quantum state tomography for time-bin entangled photon pairs [J]. Optics Express, 2009, 17(13): 10976-10989.

    CAO Rui, YUAN Chengzhi, SHEN Si, ZHANG Zichang, FAN Yunru, LI Jiarui, LI Hao, YOU Lixing, ZHOU Qiang, WANG Zizhu. Optimized detection of maximally entangled time-bin qutrits[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 85
    Download Citation