• Laser & Optoelectronics Progress
  • Vol. 62, Issue 11, 1127001 (2025)
Xinrui Li1, Yanru Chen1, Longlong Yang1, Hancong Li1, and Xiulai Xu1,2,3,*
Author Affiliations
  • 1State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Institute of Modern Optics, School of Physics, Peking University, Beijing 100871, China
  • 2Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, Jiangsu , China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    DOI: 10.3788/LOP250723 Cite this Article Set citation alerts
    Xinrui Li, Yanru Chen, Longlong Yang, Hancong Li, Xiulai Xu. Recent Progress of Solid-State Cavity Quantum Electrodynamics Based on Interaction Between Plasmonic Nanocavity and Two-Dimensional Excitons (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127001 Copy Citation Text show less
    References

    [1] Chang D E, Vuletić V, Lukin M D. Quantum nonlinear optics: photon by photon[J]. Nature Photonics, 8, 685-694(2014).

    [2] Liu R M, Zhou Z K, Yu Y C et al. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit[J]. Physical Review Letters, 118, 237401(2017).

    [3] Forn-Díaz P, Lamata L, Rico E et al. Ultrastrong coupling regimes of light-matter interaction[J]. Reviews of Modern Physics, 91, 025005(2019).

    [4] Kimble H J. The quantum Internet[J]. Nature, 453, 1023-1030(2008).

    [5] Li H C, Chen X Q, Yang J N et al. Luminescence and applications of single quantum dots[J]. Chinese Journal of Luminescence, 44, 1251-1272(2023).

    [6] Kim H, Bose R, Shen T C et al. A quantum logic gate between a solid-state quantum bit and a photon[J]. Nature Photonics, 7, 373-377(2013).

    [7] Tame M S, McEnery K R, Özdemir Ş K et al. Quantum plasmonics[J]. Nature Physics, 9, 329-340(2013).

    [8] Chang D E, Sørensen A S, Demler E A et al. A single-photon transistor using nanoscale surface plasmons[J]. Nature Physics, 3, 807-812(2007).

    [9] Shomroni I, Rosenblum S, Lovsky Y et al. All-optical routing of single photons by a one-atom switch controlled by a single photon[J]. Science, 345, 903-906(2014).

    [10] Mabuchi H, Doherty A C. Cavity quantum electrodynamics: coherence in context[J]. Science, 298, 1372-1377(2002).

    [11] Kiraz A, Michler P, Becher C et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure[J]. Applied Physics Letters, 78, 3932-3934(2001).

    [12] Walther H, Varcoe B T H, Englert B G et al. Cavity quantum electrodynamics[J]. Reports on Progress in Physics, 69, 1325-1382(2006).

    [13] Pagliano F, Cho Y J, Xia T et al. Dynamically controlling the emission of single excitons in photonic crystal cavities[J]. Nature Communications, 5, 5786(2014).

    [14] Yu X T, Yuan Y F, Xu J H et al. Strong coupling in microcavity structures: principle, design, and practical application[J]. Laser & Photonics Reviews, 13, 1800219(2019).

    [15] Chikkaraddy R, de Nijs B, Benz F et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 535, 127-130(2016).

    [16] Hugall J T, Singh A, van Hulst N F. Plasmonic cavity coupling[J]. ACS Photonics, 5, 43-53(2018).

    [17] Qian C J, Xie X, Yang J N et al. Enhanced strong interaction between nanocavities and p-shell excitons beyond the dipole approximation[J]. Physical Review Letters, 122, 087401(2019).

    [18] Qian C J, Wu S Y, Song F L et al. Two-photon Rabi splitting in a coupled system of a nanocavity and exciton complexes[J]. Physical Review Letters, 120, 213901(2018).

    [19] Yang J N, Qian C J, Xie X et al. Diabolical points in coupled active cavities with quantum emitters[J]. Light: Science & Applications, 9, 6(2020).

    [20] Born M, Wolf E, Hecht E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[J]. Physics Today, 53, 77-78(2000).

    [21] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).

    [22] Guo L, Ji M, Kang B W et al. Plasmon-assisted mode selection lasing in a lanthanide-based microcavity[J]. Advanced Photonics, 6, 035001(2024).

    [23] Lü Z Y, Sun N, Wang N et al. Enhanced Raman properties of silver-modified open nanocavity composite structures[J]. Acta Optica Sinica, 43, 2324001(2023).

    [24] Jung M, Shvets G. Emergence of tunable intersubband-plasmon-polaritons in graphene superlattices[J]. Advanced Photonics, 5, 026004(2023).

    [25] Xiao D, Liu G B, Feng W X et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides[J]. Physical Review Letters, 108, 196802(2012).

    [26] Mak K F, Lee C G, Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010).

    [27] Ugeda M M, Bradley A J, Shi S F et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor[J]. Nature Materials, 13, 1091-1095(2014).

    [28] Komsa H P, Krasheninnikov A V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles[J]. Physical Review B, 86, 241201(2012).

    [29] Wang Z, Sreekanth K V, Zhao M et al. Two-dimensional materials for tunable and nonlinear metaoptics[J]. Advanced Photonics, 6, 034001(2024).

    [30] Qian W Q, Liu H Y, Gao T T et al. Research progress on the active regulation of photoelectric properties of two‑dimensional TMDs excitons (invited)[J]. Chinese Journal of Lasers, 51, 1801001(2024).

    [31] Schaibley J R, Yu H, Clark G et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 1, 16055(2016).

    [32] Sie E J, McIver J W, Lee Y H et al. Valley-selective optical stark effect in monolayer WS2[J]. Nature Materials, 14, 290-294(2015).

    [33] Dai D J, Fu B W, Yang J N et al. Twist angle-dependent valley polarization switching in heterostructures[J]. Science Advances, 10, eado1281(2024).

    [34] Li H, Wu J, Yin Z Y et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets[J]. Accounts of Chemical Research, 47, 1067-1075(2014).

    [35] Novoselov K S, Jiang D, Schedin F et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453(2005).

    [36] Splendiani A, Sun L, Zhang Y B et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 10, 1271-1275(2010).

    [37] Zhang Y, Chang T R, Zhou B et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 9, 111-115(2014).

    [38] He K L, Kumar N, Zhao L et al. Tightly bound excitons in monolayer WSe2[J]. Physical Review Letters, 113, 026803(2014).

    [39] Chernikov A, Berkelbach T C, Hill H M et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2[J]. Physical Review Letters, 113, 076802(2014).

    [40] Sun S B, Yu Y, Dang J C et al. Large g factor in bilayer WS2 flakes[J]. Applied Physics Letters, 114, 113104(2019).

    [41] Koperski M, Nogajewski K, Arora A et al. Single photon emitters in exfoliated WSe2 structures[J]. Nature Nanotechnology, 10, 503-506(2015).

    [42] Tonndorf P, Schmidt R, Schneider R et al. Single-photon emission from localized excitons in an atomically thin semiconductor[J]. Optica, 2, 347-352(2015).

    [43] Tongay S, Suh J, Ataca C et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons[J]. Scientific Reports, 3, 2657(2013).

    [44] Baranov D G, Wersäll M, Cuadra J et al. Novel nanostructures and materials for strong light-matter interactions[J]. ACS Photonics, 5, 24-42(2018).

    [45] Yang L L. Interaction between plasmonic nanocavity and two-dimensional semiconductor excitons[D], 10-11(2023).

    [46] Yu H K, Peng Y S, Yang Y et al. Plasmon-enhanced light-matter interactions and applications[J]. NPJ Computational Materials, 5, 45(2019).

    [47] Najmaei S, Mlayah A, Arbouet A et al. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures[J]. ACS Nano, 8, 12682-12689(2014).

    [48] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 69, 37-38(1946).

    [49] Lin W H, Wu P C, Akbari H et al. Electrically tunable and dramatically enhanced valley-polarized emission of monolayer WS2 at room temperature with plasmonic Archimedes spiral nanostructures[J]. Advanced Materials, 34, 2104863(2022).

    [50] Wen T, Zhang W D, Liu S et al. Steering valley-polarized emission of monolayer MoS2 sandwiched in plasmonic antennas[J]. Science Advances, 6, eaao0019(2020).

    [51] Vasa P, Wang W, Pomraenke R et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates[J]. Nature Photonics, 7, 128-132(2013).

    [52] Savona V, Andreani L C, Schwendimann P et al. Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes[J]. Solid State Communications, 93, 733-739(1995).

    [53] Savasta S, Saija R, Ridolfo A et al. Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna[J]. ACS Nano, 4, 6369-6376(2010).

    [54] Santhosh K, Bitton O, Chuntonov L et al. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit[J]. Nature Communications, 7, ncomms11823(2016).

    [55] Liu X Z, Zhang X Y, Zhang S P et al. Light-matter coupling of two-dimensional semiconductors in micro-nano optical cavities[J]. Acta Optica Sinica, 41, 0823003(2021).

    [56] Byrnes T, Kim N Y, Yamamoto Y. Exciton-polariton condensates[J]. Nature Physics, 10, 803-813(2014).

    [57] Dufferwiel S, Schwarz S, Withers F et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 6, 8579(2015).

    [58] Plumhof J D, Stöferle T, Mai L J et al. Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer[J]. Nature Materials, 13, 247-252(2014).

    [59] Ardizzone V, Riminucci F, Zanotti S et al. Polariton Bose-Einstein condensate from a bound state in the continuum[J]. Nature, 605, 447-452(2022).

    [60] Lerario G, Fieramosca A, Barachati F et al. Room-temperature superfluidity in a polariton condensate[J]. Nature Physics, 13, 837-841(2017).

    [61] Fogler M M, Butov L V, Novoselov K S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures[J]. Nature Communications, 5, 4555(2014).

    [62] Kavokin A, Liew T C H, Schneider C et al. Polariton condensates for classical and quantum computing[J]. Nature Reviews Physics, 4, 435-451(2022).

    [63] Clarke D D A, Hess O. Near-field strong coupling and entanglement of quantum emitters for room-temperature quantum technologies[J]. PhotoniX, 5, 33(2024).

    [64] Ramezani M, Halpin A, Fernández-Domínguez A I et al. Plasmon-exciton-polariton lasing[J]. Optica, 4, 31-37(2017).

    [65] Cao E, Lin W H, Sun M T et al. Exciton-plasmon coupling interactions: from principle to applications[J]. Nanophotonics, 7, 145-167(2018).

    [66] Liu L, Tobing L Y M, Wu T T et al. Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals[J]. Optica, 8, 1416-1423(2021).

    [67] Zhong J, Li J Y, Liu J et al. Room-temperature strong coupling of few-exciton in a monolayer WS2 with plasmon and dispersion deviation[J]. Nano Letters, 24, 1579-1586(2024).

    [68] Su Y W, Lu H, Shi S H et al. Strong coupling between surface plasmons in metallic grating and excitons in tungsten disulfide[J]. Acta Optica Sinica, 44, 0424002(2024).

    [69] Fu B W, Dai W S, Yang L L et al. Enhanced light–matter interaction with Bloch surface wave modulated plasmonic nanocavities[J]. Nano Letters, 25, 722-729(2025).

    [70] Gao W, Lee Y H, Jiang R B et al. Localized and continuous tuning of monolayer MoS2 photoluminescence using a single shape-controlled Ag nanoantenna[J]. Advanced Materials, 28, 701-706(2016).

    [71] Sun J W, Hu H T, Pan D et al. Selectively depopulating valley-polarized excitons in monolayer MoS2 by local chirality in single plasmonic nanocavity[J]. Nano Letters, 20, 4953-4959(2020).

    [72] Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials[J]. Science, 317, 1698-1702(2007).

    [73] Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nature Materials, 12, 815-820(2013).

    [74] Deng M Y, Wang X, Chen J N et al. Plasmonic modulation of valleytronic emission in two-dimensional transition metal dichalcogenides[J]. Advanced Functional Materials, 31, 2010234(2021).

    [75] Lee H S, Luong D H, Kim M S et al. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits[J]. Nature Communications, 7, 13663(2016).

    [76] Gong S H, Alpeggiani F, Sciacca B et al. Nanoscale chiral valley-photon interface through optical spin-orbit coupling[J]. Science, 359, 443-447(2018).

    [77] Lee H S, Kim M S, Jin Y et al. Selective amplification of the primary exciton in a MoS2 monolayer[J]. Physical Review Letters, 115, 226801(2015).

    [78] Törmä P, Barnes W L. Strong coupling between surface plasmon polaritons and emitters: a review[J]. Reports on Progress in Physics, 78, 013901(2015).

    [79] Zengin G, Wersäll M, Nilsson S et al. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions[J]. Physical Review Letters, 114, 157401(2015).

    [80] Yang L L, Xie X, Yang J N et al. Strong light-matter interactions between gap plasmons and two-dimensional excitons under ambient conditions in a deterministic way[J]. Nano Letters, 22, 2177-2186(2022).

    [81] Kane E O. Band structure of indium antimonide[J]. Journal of Physics and Chemistry of Solids, 1, 249-261(1957).

    [82] Asada M, Kameyama A, Suematsu Y. Gain and intervalence band absorption in quantum-well lasers[J]. IEEE Journal of Quantum Electronics, 20, 745-753(1984).

    [83] Zhang C J, Wang H N, Chan W M et al. Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: experiments and theory[J]. Physical Review B, 89, 205436(2014).

    [84] Vasilevskiy M I, Santiago-Pérez D G, Trallero-Giner C et al. Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: tunable interaction between two Bose-Einstein condensates[J]. Physical Review B, 92, 245435(2015).

    [85] Zheng D, Zhang S P, Deng Q et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2[J]. Nano Letters, 17, 3809-3814(2017).

    [86] Stührenberg M, Munkhbat B, Baranov D G et al. Strong light-matter coupling between plasmons in individual gold Bi-pyramids and excitons in mono- and multilayer WSe2[J]. Nano Letters, 18, 5938-5945(2018).

    [87] Wen J X, Wang H, Wang W L et al. Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals[J]. Nano Letters, 17, 4689-4697(2017).

    [88] Zhang W B, You J B, Liu J F et al. Steering room-temperature plexcitonic strong coupling: a diexcitonic perspective[J]. Nano Letters, 21, 8979-8986(2021).

    [89] Li W C, Zhou Q, Zhang P et al. Bright optical eigenmode of 1 nm3 mode volume[J]. Physical Review Letters, 126, 257401(2021).

    [90] Srivastava A, Sidler M, Allain A V et al. Optically active quantum dots in monolayer WSe2[J]. Nature Nanotechnology, 10, 491-496(2015).

    [91] Luo Y, Shepard G D, Ardelean J V et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities[J]. Nature Nanotechnology, 13, 1137-1142(2018).

    [92] Cai T, Dutta S, Aghaeimeibodi S et al. Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons[J]. Nano Letters, 17, 6564-6568(2017).

    [93] Dang J C, Sun S B, Xie X et al. Identifying defect-related quantum emitters in monolayer WSe2[J]. NPJ 2D Materials and Applications, 4, 2(2020).

    [94] Yu Y, Dang J C, Qian C J et al. Many-body effect of mesoscopic localized states in MoS2 monolayer[J]. Physical Review Materials, 3, 051001(2019).

    [95] Peng L T, Chan H, Choo P et al. Creation of single-photon emitters in WSe2 monolayers using nanometer-sized gold tips[J]. Nano Letters, 20, 5866-5872(2020).

    [96] Lee S J, So J P, Kim R M et al. Spin angular momentum-encoded single-photon emitters in a chiral nanoparticle-coupled WSe2 monolayer[J]. Science Advances, 10, eadn7210(2024).

    [97] Yang L L, Yuan Y, Fu B W et al. Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities[J]. Nature Communications, 14, 4265(2023).

    [98] Lee H E, Ahn H Y, Mun J et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles[J]. Nature, 556, 360-365(2018).

    [99] Kim R M, Huh J H, Yoo S et al. Enantioselective sensing by collective circular dichroism[J]. Nature, 612, 470-476(2022).

    [100] He Y M, Clark G, Schaibley J R et al. Single quantum emitters in monolayer semiconductors[J]. Nature Nanotechnology, 10, 497-502(2015).

    [101] Linhart L, Paur M, Smejkal V et al. Localized intervalley defect excitons as single-photon emitters in WSe2[J]. Physical Review Letters, 123, 146401(2019).

    [102] Hernández López P, Heeg S, Schattauer C et al. Strain control of hybridization between dark and localized excitons in a 2D semiconductor[J]. Nature Communications, 13, 7691(2022).

    [103] Seyler K L, Rivera P, Yu H Y et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers[J]. Nature, 567, 66-70(2019).

    [104] Zhu Z, Yuan J T, Zhou H Q et al. Excitonic resonant emission-absorption of surface plasmons in transition metal dichalcogenides for chip-level electronic-photonic integrated circuits[J]. ACS Photonics, 3, 869-874(2016).

    Xinrui Li, Yanru Chen, Longlong Yang, Hancong Li, Xiulai Xu. Recent Progress of Solid-State Cavity Quantum Electrodynamics Based on Interaction Between Plasmonic Nanocavity and Two-Dimensional Excitons (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127001
    Download Citation