• Journal of Infrared and Millimeter Waves
  • Vol. 24, Issue 2, 143 (2005)
[in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese]. FABRICATION OF ARRAYED WAVEGUIDE GRATING BASED ON SOI MATERIAL[J]. Journal of Infrared and Millimeter Waves, 2005, 24(2): 143 Copy Citation Text show less
    References

    [1] Chen Y J, Li H. Planar waveguide WDM techology:from components to systems [J]. SPIE, 1999,CR71:75-82.

    [2] Klekamp A, Munzner R. Calculation of imaging errors of AWG [J]. Journal of Lightwave Technology, 2003, 21(9):1978-1986.

    [3] Bracket C A. Dense wavelength division multiplexing networks:principles and applications [J]. Journal on Selected Areas in Communications, 1990,8:948-964.

    [4] Thompson G H B, Asghari M, Clements S J, et al. Low-loss eight-channel integrated InGaAsP/InP demultiplexer [C]. CLEO'96,512-514.

    [5] Thomas Edward Murphy, Jeffrey Todd Hastings. Fabrication and characterization of Bragg-reflection filters in SOI rib waveguides [J]. Journal of Lightwave Technology, 2001, 19(12):1938-1942.

    [6] Takada K, Abe M, Shibata T, et al. 10-ghz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs. IEEE Photonics Technology Letters. 2001,13(6):577-578.

    [7] Dragone C. An N×N optical multiplexer using a planar arrangement of two star couplers [J]. IEEE Photon. Technol. Lett, 1991,3:896-899.

    [8] Hiroshi Takahashi, Kazuiro Oda, Hiroma Toba, et al. Transmission characteristics of arrayed waveguide N×N wavelength multiplexer [J]. Journal of Lightwave Technology, 1995,13(3):447-455.

    [9] Yoshiaki Tachikawa, Yasuyuki Inoue. Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications [J]. Journal of Lightwave Technology, 1996,14(6):977-984.

    [10] Tachikawa Y, Inoue Y, Kawachi M, et al. Arrayed-waveguide grating add-drop multiplexer with loop-back optical paths [J]. IEE Electron Lett., 1993,29(24):2133-2134.

    [11] Tanobe H, Kondo Y, Kadota Y, et al. Temperature insensitive arrayed waveguide grating on InP substrates [J]. IEEE Photonics Technology Letters, 1998,10(2):235-237.

    [12] Ishii M, Takagi A. Low-loss fibre-pigtailed 256 channel arrayed-waveguide grating multiplexer using cascaded laterally-tapered wavegudes [J]. Electronics Letters, 2001,37(23):1401-1402.

    [13] Keil N. Yao H H, Zawadzki C. Athermal polarization-independent arrayed waveguide grating (AWG) multiplexer using an all-polymer approach [J]. Applied Physics B, 2001,73,619-621.

    [14] Takada K, Yamada H, Okamoto K. 320-channel multiplexer consisting of 100GHz-spaced parent AWG and 10GHz-spaced subsidiay AWGs [J]. Electronics Letters, 1999,35(10):824-826.

    [15] Ooba N, Hibino Y, Inoue Y, et al. Athermal silica-based arrayed-waveguide grating multiplexer using bimetal plate temperature compensator [J]. Electronics Letters, 2000,36(21):1800-1803.

    [16] Takada K, Abe M, Shibata M. Low-crosstalk 10-ghz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer [J]. IEEE Photonics Technology Letters, 2001,13(11):1182-1184.

    [17] Meint K Smit, Cor Van Dam. Phasar-based WDM-devices:principles, design and applications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996,2(2):236-250.

    [in Chinese], [in Chinese], [in Chinese]. FABRICATION OF ARRAYED WAVEGUIDE GRATING BASED ON SOI MATERIAL[J]. Journal of Infrared and Millimeter Waves, 2005, 24(2): 143
    Download Citation