• Photonics Research
  • Vol. 10, Issue 11, 2599 (2022)
Huicong Li1、2, Wenzhu Huang1、3, Wentao Zhang1、2、*, and Jianxiang Zhang1、2
Author Affiliations
  • 1State Key Laboratory of Transducer Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Shenzhen Academy of Disaster Prevention and Reduction, Shenzhen 518003, China
  • show less
    DOI: 10.1364/PRJ.468283 Cite this Article Set citation alerts
    Huicong Li, Wenzhu Huang, Wentao Zhang, Jianxiang Zhang. Fiber optic strain rate sensor based on a differentiating interferometer[J]. Photonics Research, 2022, 10(11): 2599 Copy Citation Text show less
    References

    [1] J.-W. Baek, H.-K. Yang, H.-G. Park. Loading rate effect on reinforced concrete walls with low aspect ratios under high-frequency earthquake. ACI Struct. J., 117, 105-118(2020).

    [2] W. Wang. Strain rate effect on the progressive collapse analysis of RC frame structure under earthquake. Adv. Civ. Eng., 2020, 5808701(2020).

    [3] H. Zhang, H. N. Li. Dynamic analysis of reinforced concrete structure with strain rate effect. Mater. Res. Innov., 15, S213-S216(2011).

    [4] M. Li, H. Li. Effects of strain rate on reinforced concrete structure under seismic loading. Adv. Struct. Eng., 15, 461-475(2012).

    [5] F. Masson, J. Chéry, D. Hatzfeld, J. Martinod, P. Vernant, F. Tavakoli, M. Ghafory-Ashtiani. Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophys. J. Int., 160, 217-226(2005).

    [6] V. L. Stevens, J.-P. Avouac. On the relationship between strain rate and seismicity in the India–Asia collision zone: implications for probabilistic seismic hazard. Geophys. J. Int., 226, 220-245(2021).

    [7] E. Hussain, T. J. Wright, R. J. Walters, D. P. S. Bekaert, R. Lloyd, A. Hooper. Constant strain accumulation rate between major earthquakes on the North Anatolian fault. Nat. Commun., 9, 1392(2018).

    [8] E. Gunawan, S. Widiyantoro. Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate. J. Geodyn., 123, 49-54(2019).

    [9] A. Dogru. Deformation of Eastern Turkey from seismic and geodetic strain rates. Sci. Res. Essays, 5, 911-916(2010).

    [10] M. Hackl, R. Malservisi, S. Wdowinski. Strain rate patterns from dense GPS networks. Nat. Hazards Earth Syst. Sci., 9, 1177-1187(2009).

    [11] J. Wang. Calculation method of strain rate field based on GPS observation. Earthquake, 39, 122-134(2019).

    [12] I. Lior, A. Sladen, D. Mercerat, J.-P. Ampuero, D. Rivet, S. Sambolian. Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination. Solid Earth, 12, 1421-1442(2021).

    [13] H. F. Wang, X. Zeng, D. E. Miller, D. Fratta, K. L. Feigl, C. H. Thurber, R. J. Mellors. Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays. Geophys. J. Int., 213, 2020-2036(2018).

    [14] S. Ide, E. Araki, H. Matsumoto. Very broadband strain-rate measurements along a submarine fiber-optic cable off Cape Muroto, Nankai subduction zone, Japan. Earth Planets Space, 73, 63(2021).

    [15] P. Jousset, G. Currenti, B. Schwarz, A. Chalari, F. Tilmann, T. Reinsch, L. Zuccarello, E. Privitera, C. M. Krawczyk. Fibre optic distributed acoustic sensing of volcanic events. Nat. Commun., 13, 1753(2022).

    [16] C. K. Lee, T. C. O’Sullivan. Piezoelectric strain rate gages. J. Acoust. Soc. Am., 90, 945-953(1991).

    [17] J. Juston, D. Bauer. Strain rate sensing for vibration control of flexible structures. 32nd Structures, Structural Dynamics, and Materials Conference, 1991-1118(1991).

    [18] P. Costa Antunes, J. Miguel Dias, H. Varum, P. André. Dynamic structural health monitoring of a civil engineering structure with a POF accelerometer. Sens. Rev., 34, 36-41(2014).

    [19] M. A. Zumberge, W. Hatfield, F. K. Wyatt. Measuring seafloor strain with an optical fiber interferometer. Earth Space Sci., 5, 371-379(2018).

    [20] Q. Liu, Z. He, T. Tokunaga. Sensing the earth crustal deformation with nano-strain resolution fiber-optic sensors. Opt. Express, 23, A428-A436(2015).

    [21] T. Chang, Y. Yang, Z. Luo, M. Yu, Y. Yuan, F. Yu, H.-L. Cui. Shallow seafloor seismic wave monitoring using 3-component fiber optic interferometric accelerometer. Meas. Sci. Technol., 33, 015101(2021).

    [22] Y. L. Lo, J. S. Sirkis. Strain-rate sensor based on in-fiber Doppler velocimetry. Opt. Eng., 37, 1648-1654(1998).

    [23] C. D. Butter, G. B. Hocker. Fiber optics strain gauge. Appl. Opt., 17, 2867-2869(1978).

    [24] S. J. Spammer, P. L. Swart. Differentiating optical-fiber Mach–Zehnder interferometer. Appl. Opt., 34, 2350-2353(1995).

    [25] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [26] X. Chen, M. Yan, J. Yu, R. Tang. Design of light source for ultra-high precision fiber optic gyroscope. Proc. SPIE, 12062, 1206211(2021).

    [27] J. Honthaas, J.-J. Bonnefois, E. Ducloux, H. Lefèvre. Interferometric filtering of the excess relative intensity noise of the broadband source of a fiber optic gyroscope. Proc. SPIE, 9157, 91572D(2014).

    [28] R. C. Rabelo, R. T. d. Carvalho, J. Blake. SNR enhancement of intensity noise-limited FOGs. J. Lightwave Technol., 18, 2146-2150(2000).

    [29] S. Zhao, Q. Liu, Y. Liu, H. Ma, Z. He. Navigation-grade resonant fiber-optic gyroscope using ultra-simple white-light multibeam interferometry. Photon. Res., 10, 542-549(2022).

    [30] J. Zhang, W. Huang, W. Zhang, F. Li. Improved DFB-FL sensor interrogation with low harmonic distortion based on extended Kalman filter. J. Lightwave Technol., 39, 5183-5190(2021).

    [31] A. Araya, A. Takamori, W. Morii, K. Miyo, M. Ohashi, K. Hayama, T. Uchiyama, S. Miyoki, Y. Saito. Design and operation of a 1500-m laser strainmeter installed at an underground site in Kamioka, Japan. Earth Planets Space, 69, 77(2017).

    [32] K. Krakenes, K. Blotekjaer. Comparison of fiber-optic Sagnac and Mach-Zehnder interferometers with respect to thermal processes in the fiber. J. Lightwave Technol., 13, 682-686(1995).

    [33] L. Duan. Thermal noise-limited fiber-optic sensing at infrasonic frequencies. IEEE J. Quantum Electron., 51, 7700106(2015).

    [34] Y. Li, Y. Cao, D. He, Y. Wu, F. Chen, C. Peng, Z. Li. Thermal phase noise in giant interferometric fiber optic gyroscopes. Opt. Express, 27, 14121-14132(2019).

    [35] F. Walter, D. Gräff, F. Lindner, P. Paitz, M. Köpfli, M. Chmiel, A. Fichtner. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun., 11, 2436(2020).

    [36] H. Zhang, M. Zhang, L. Wang, Y. Liao, D. N. Wang. Output noise analysis of optical fiber interferometric sensors using a 3 × 3 coupler. Meas. Sci. Technol., 22, 125203(2011).

    Huicong Li, Wenzhu Huang, Wentao Zhang, Jianxiang Zhang. Fiber optic strain rate sensor based on a differentiating interferometer[J]. Photonics Research, 2022, 10(11): 2599
    Download Citation