• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101005 (2022)
Xianghe Meng1、2, Zhuang Li1、2, and Jiyong Yao1、*
Author Affiliations
  • 1Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202249.0101005 Cite this Article Set citation alerts
    Xianghe Meng, Zhuang Li, Jiyong Yao. Property and Application of New Infrared Nonlinear Optical Crystal BaGa4Se7[J]. Chinese Journal of Lasers, 2022, 49(1): 0101005 Copy Citation Text show less
    References

    [1] Liang F, Kang L, Lin Z S et al. Mid-infrared nonlinear optical materials based on metal chalcogenides: structure-property relationship[J]. Crystal Growth & Design, 17, 2254-2289(2017).

    [2] Liang F, Kang L, Lin Z S et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures[J]. Coordination Chemistry Reviews, 333, 57-70(2017).

    [3] Luo X Y, Li Z, Guo Y W et al. Recent progress on new infrared nonlinear optical materials with application prospect[J]. Journal of Solid State Chemistry, 270, 674-687(2019).

    [4] Petrov V, Badikov V V, Badikov D V et al. Barium nonlinear optical crystals for the mid-IR: characterization and some applications[J]. Journal of the Optical Society of America B, 38, B46-B58(2021).

    [5] Wang W K, Mei D J, Liang F et al. Inherent laws between tetrahedral arrangement pattern and optical performance in tetrahedron-based mid-infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 421, 213444(2020).

    [6] Chung I, Kanatzidis M G. Metal chalcogenides: a rich source of nonlinear optical materials[J]. Chemistry of Materials, 26, 849-869(2014).

    [7] Yao J, Mei D, Bai L et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J]. Inorganic Chemistry, 49, 9212-9216(2010).

    [8] Badikov V, Badikov D, Shevyrdyaeva G et al. Phase-matching properties of BaGa4S7 and BaGa4Se7: wide-bandgap nonlinear crystals for the mid-infrared[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 5, 31-33(2011).

    [9] Boursier E, Segonds P, Ménaert B et al. Phase-matching directions and refined Sellmeier equations of the monoclinic acentric crystal BaGa4Se7[J]. Optics Letters, 41, 2731-2734(2016).

    [10] Kato K, Miyata K, Petrov V. Phase-matching properties of BaGa4Se7 for SHG and SFG in the 0.90110.5910 μm range[J]. Applied Optics, 56, 2978-2981(2017).

    [11] Yang F, Yao J Y, Xu H Y et al. Midinfrared optical parametric amplifier with 6.411 μm range based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 27, 1100-1103(2015).

    [12] Zhai N, Li C, Xu B et al. Temperature-dependent Sellmeier equations of IR nonlinear optical crystal BaGa4Se7[J]. Crystals, 7, 62(2017).

    [13] Kato K, Miyata K, Badikov V V et al. Thermo-optic dispersion formula for BaGa4Se7[J]. Applied Optics, 57, 2935-2938(2018).

    [14] Zhang X, Yao J Y, Yin W L et al. Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal[J]. Optics Express, 23, 552-558(2015).

    [15] Boursier E, Segonds P, Debray J et al. Angle noncritical phase-matched second-harmonic generation in the monoclinic crystal BaGa4Se7[J]. Optics Letters, 40, 4591-4594(2015).

    [16] Kostyukova N Y, Boyko A A, Badikov V et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Optics Letters, 41, 3667-3670(2016).

    [17] Guo F, Segonds P, Boursier E et al. Magnitude and relative sign of the quadratic nonlinear coefficients of the BGSe monoclinic acentric crystal[C], ATh4A.2(2018).

    [18] Zhao X, Li C, Bai J et al. Recalibration of the nonlinear optical coefficients of BaGa4Se7 crystal using second-harmonic-generation method[J]. Optics Letters, 46, 5894-5897(2021).

    [19] Yao J Y, Yin W L, Feng K et al. Growth and characterization of BaGa4Se7 crystal[J]. Journal of Crystal Growth, 346, 1-4(2012).

    [20] Yuan J H, Li C, Yao B Q et al. High power, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.1 μm Ho∶YAG laser[J]. Optics Express, 24, 6083-6087(2016).

    [21] Kolker D B, Kostyukova N Y, Boyko A A et al. Widely tunable (2.610.4 μm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd∶YLiF4 laser[J]. Journal of Physics Communications, 2, 035039(2018).

    [22] Kostyukova N Y, Boyko A A, Erushin E Y et al. Laser-induced damage threshold of BaGa4Se7 and BaGa2GeSe6 nonlinear crystals at 1053 μm[J]. Journal of the Optical Society of America B, 36, 2260-2265(2019).

    [23] Yang F, Yao J Y, Xu H Y et al. High efficiency and high peak power picosecond mid-infrared optical parametric amplifier based on BaGa4Se7 crystal[J]. Optics Letters, 38, 3903-3905(2013).

    [24] Zhang Y C, Zuo Y, Li Z et al. High energy mid-infrared laser pulse output from a BaGa4Se7 crystal-based optical parametric oscillator[J]. Optics Letters, 45, 4595-4598(2020).

    [25] Xu D G, Zhang J X, He Y X et al. High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal[J]. Optics Letters, 45, 5287-5290(2020).

    [26] Zhao B R, Chen Y, Yao B Q et al. High-efficiency, tunable 89 μm BaGa4Se7 optical parametric oscillator pumped at 21 μm[J]. Optical Materials Express, 8, 3332-3337(2018).

    [27] Yang K, Liu G, Li C et al. Research on performance improvement technology of a BaGa4Se7 mid-infrared optical parametric oscillator[J]. Optics Letters, 45, 6418-6421(2020).

    [28] Hu S, Wang L, Guo Y et al. High-conversion-efficiency tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.79-μm laser[J]. Optics Letters, 44, 2201-2203(2019).

    [29] Sun M G, Cao Z S, Yao J Y et al. Continuous-wave difference-frequency generation based on BaGa4Se7 crystal[J]. Optics Express, 27, 4014-4023(2019).

    [30] Zhang J, Wang Q, Hao J et al. Broadband, few-cycle mid-infrared continuum based on the intra-pulse difference frequency generation with BGSe crystals[J]. Optics Express, 28, 37903-37909(2020).

    [31] Kong H, Bian J T, Yao J Y et al. Temperature tuning of BaGa4Se7 optical parametric oscillator[J]. Chinese Optics Letters, 19, 021901(2021).

    [32] Chemla D S, Kupecek P J, Robertson D S et al. Silver thiogallate, a new material with potential for infrared devices[J]. Optics Communications, 3, 29-31(1971).

    [33] Boyd G, Kasper H, McFee J et al. Linear and nonlinear optical properties of some ternary selenides[J]. IEEE Journal of Quantum Electronics, 8, 900-908(1972).

    [34] Boyd G D, Buehler E, Storz F G. Linear and nonlinear optical properties of ZnGeP2 and CdSe[J]. Applied Physics Letters, 18, 301-304(1971).

    [35] Wang T J, Zhang H Z, Wu F G et al. 35 μm AgGaS2 optical parametric oscillator with prism cavity[J]. Laser Physics, 19, 377-380(2009).

    [36] Wang L S, Cao Z S, Wang H et al. A widely tunable (512.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2[J]. Optics Communications, 284, 358-362(2011).

    [37] Meisenheimer S K, Fürst J U, Buse K et al. Continuous-wave optical parametric oscillation tunable up to an 8 μm wavelength[J]. Optica, 4, 189-192(2017).

    [38] Araki S, Ando K, Miyamoto K et al. Ultra-widely tunable mid-infrared (618 μm) optical vortex source[J]. Applied Optics, 57, 620-624(2018).

    [39] Qian C P, Yao B Q, Zhao B R et al. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Optics Letters, 44, 715-718(2019).

    [40] Qian C, Duan X, Yao B et al. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier[J]. Optics Express, 26, 30195-30201(2018).

    Xianghe Meng, Zhuang Li, Jiyong Yao. Property and Application of New Infrared Nonlinear Optical Crystal BaGa4Se7[J]. Chinese Journal of Lasers, 2022, 49(1): 0101005
    Download Citation