• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101005 (2022)
Xianghe Meng1、2, Zhuang Li1、2, and Jiyong Yao1、*
Author Affiliations
  • 1Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202249.0101005 Cite this Article Set citation alerts
    Xianghe Meng, Zhuang Li, Jiyong Yao. Property and Application of New Infrared Nonlinear Optical Crystal BaGa4Se7[J]. Chinese Journal of Lasers, 2022, 49(1): 0101005 Copy Citation Text show less
    Crystal structure of BGSe and the coordination mode of cations. (a) Crystal structure of BGSe; (b) coordination mode of Ba2+
    Fig. 1. Crystal structure of BGSe and the coordination mode of cations. (a) Crystal structure of BGSe; (b) coordination mode of Ba2+
    Photographs of BGSe crystal grown by vertical Bridgeman-Stockbarger technique and BGSe devices
    Fig. 2. Photographs of BGSe crystal grown by vertical Bridgeman-Stockbarger technique and BGSe devices
    IR transmittance spectrum of BGSe
    Fig. 3. IR transmittance spectrum of BGSe
    Schematic of BGSe-OPO[27]. (a) Schematic of BGSe OPO in a linear cavity; (b) schematic of BGSe OPO in a ring cavity; (c) linear cavity output power versus incident pump power; (d) ring cavity OPO M2 of signal light in the x and y directions
    Fig. 4. Schematic of BGSe-OPO[27]. (a) Schematic of BGSe OPO in a linear cavity; (b) schematic of BGSe OPO in a ring cavity; (c) linear cavity output power versus incident pump power; (d) ring cavity OPO M2 of signal light in the x and y directions
    Experimental device of MIR generation with BGSe crystal[30]
    Fig. 5. Experimental device of MIR generation with BGSe crystal[30]
    OPO process of BGSe crystal and peak wavelength of idle frequency light at different temperatures[31]. (a) Schematic of experimental setup; (b) peak wavelength of idler light of BGSe (56.3°,0°) at 30140°C
    Fig. 6. OPO process of BGSe crystal and peak wavelength of idle frequency light at different temperatures[31]. (a) Schematic of experimental setup; (b) peak wavelength of idler light of BGSe (56.3°,0°) at 30140°C
    Validity rangenA1A2A3A4A5Ref.
    0.48-10.4 μmnx7.4100400.2933400.0512151265.1191896.441[8]
    ny7.3230960.2928890.0527251182.3241573.474
    nz7.7641970.3268120.0697341297.0791975.857
    0.5-2.5 μmnx5.9529530.2501720.0816140.001709-[11]
    ny6.0217940.2569510.0791910.001925-
    nz6.2939760.2826480.0940570.002579-
    2-11 μmnx7.4051140.2253160.0512151782.0911170.528[9]
    ny7.3884580.2244810.0527251778.4411238.145
    nz7.6228840.2380180.0697341885.3071303.370
    0.901-10.591 μmnx6.724310.263750.04248602.97749.87[10]
    ny6.866030.268160.04259682.97781.78
    nz7.167090.326810.06973731.86790.16
    Table 1. Fitting Sellmeier equations of ni2A1iA2i/(λ2A3i)+ A4i/(λ2A5i) in Refs. [8-10] and ni2A1iA2i/(λ2A3i)-A4iλ2 in Ref. [11] for BGSe crystals, where ix, y, and z, and λ is in μm
    Validity rangesdn/dTB1B2B3B4Ref.
    25-150 ℃dnx/dT0.68371.76071.63160.0318[12]
    dny/dT0.26920.31120.22010.4867
    dnz/dT0.72231.51701.29530.1296
    20-120 ℃dnx/dT0.608681.263681.056240.19583[13]
    dny/dT0.639351.317621.089500.24079
    dnz/dT0.631411.307901.084860.20758
    Table 2. Thermal-optical dispersion equation of dni/dT=(B1iλ-3B2iλ-2B3iλ-1B4i)×10-4 (℃-1) for BGSe crystals, where i x, y, and z, and λ is in μm
    Tensor componentTheory: converted to xyz (assumption)Maker fringes:converted to xyzOPO laser experiment, in xyzPhase-matched SHG, in xyz
    d21d16+5.2opposite sign to d23,d34comparable to d23;lager than d15;same sign to d235.3 ± 0.8
    d22+18.2±24.3±1.5-6.2 ± 0.9
    d23d34-20.6±20.4±1.5--14.2±0.8
    d31d15+14.3--+2.0±0.3
    d32d24-15.2---5.0±0.4
    d33-2.2---
    Ref.[7][14][16][1517]
    Table 3. Nonlinear coefficients dij of BGSe, with all results rescaled to 532 nm, where dij is in pm/V
    Test conditionLaser damage thresholdRef.
    Wavelength of light source /μmPulse width τ /nsBeam diameter /mmRepeat frequency frep /HzFth /(J·cm-1)Ith /(MW·cm-1)
    1.06450.412.8557[19]
    2.09275003.3122.2[20]
    1.06414~41001.4100[16]
    1.053160.21002.04±0.39254.6[21]
    1502.02 ±0.31252
    2001.81±0.25225.6
    1.0537.2±0.40.15-0.161002.30319[22]
    8.3±0.55001.75211
    10.0±0.310001.56156
    Table 4. Laser damage threshold measurements of BGSe
    Type of experimentPump sourceOutput wavelengthMaximum input-output energy or powerRef.
    OPO1.064 μm, 10 ns, 10 Hz814 μm40 mJ@1 μm→1.05 mJ@11 μm[25]
    OPO1.064 μm, 11 ns, 20 Hz3.34.1 μm101.3 mJ@1 μm→21.5 mJ@3.8 μm[24]
    OPO2.09 μm, 16 ns, 1 kHz89 μm9.58 W@2.09 μm→0.314 W@8.93 μm[26]
    OPO2.09 μm, 28 ns, 1 kHz35 μm28 W@2 μm→ 5.1 W@4 μm[27]
    OPO1.064 μm, 10 ns, 10 Hz2.717 μm61 mJ@1 μm→3.7 mJ@7.2 μm[16]
    OPO2.79 μm, 21 ns, 10 Hz3.949.55 μm18 mJ@2.79 μm→3.5 mJ@5.03 μm[28]
    DFG850 nm, 50 kHz3.157.92 μm1.5 W@850 nm→1.41 μW@5 μm[29]
    Table 5. Recent progress in laser frequency conversion experiment of BGSe crystal
    CrystalAGSAGSeCdSeZGPBGSe
    Nonlinear coefficient /(pm·V-1)1333187231.5
    Laser damage thresholdLowLowLowHighVery high
    Pump source /μm*121.522213
    Output wavelength range /μm*3931531839315
    Output line width /nm10101015010
    Melting point /℃993860135010251020
    Phase transitionNoNoYesNoNo
    Thermal conductivity /(W·m-1·K-1)1.516.5360.7
    Electron beam irradiationNoNoNoYesNo
    Ref.[32][33][34][34][7]
    Table 6. Comparison of main properties between BGSe crystal and common infrared nonlinear optical crystals
    CrystalType of experimentPump source / μmOutput wavelength / μmMaximum output energy or powerRef.
    AGSOPO1.0642.355.2721 mJ@1 μm→0.58 mJ@4 μm[35]
    AGSDFG0.780512.540 mW@0.780 μm→66 nW@8.06 μm[36]
    AGSeOPO1.574812 mW@1.57 μm→0.8 mW @4.11 μm[37]
    AGSeDFG1.9761830 mJ@1.06 μm→0.34 mJ@9 μm[38]
    CdSeOPO2.09710.51218.2W@2.097 μm→0.8 W@11 μm[34]
    ZGPOPA2.09735120 W@2.097 μm→102 W@3.92 μm[39]
    ZGPOPA2.0974.38.3116 W@2.097 μm→11.4 W@ 8.3 μm[40]
    Table 7. Representative laser output results of commonly used infrared nonlinear optical crystals
    Xianghe Meng, Zhuang Li, Jiyong Yao. Property and Application of New Infrared Nonlinear Optical Crystal BaGa4Se7[J]. Chinese Journal of Lasers, 2022, 49(1): 0101005
    Download Citation