• Laser & Optoelectronics Progress
  • Vol. 55, Issue 11, 113001 (2018)
Xinqian Guo1, Xuanbing Qiu1, Wenhai Ji2, Ligang Shao1, Shuping Liu1, Chuanliang Li1、*, and Weiguang Ma3
Author Affiliations
  • 1 School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, Shanxi 0 30024, China
  • 2 College of Information and Control Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
  • 3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/LOP55.113001 Cite this Article Set citation alerts
    Xinqian Guo, Xuanbing Qiu, Wenhai Ji, Ligang Shao, Shuping Liu, Chuanliang Li, Weiguang Ma. Minimization of Interference Fringes in Tunable Diode Laser Absorption Spectrum Based on Empirical Mode Decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(11): 113001 Copy Citation Text show less
    References

    [1] Du Z H, Zhai Y Q, Li J Y et al. Techniques of on-line monitoring volatile organic compounds in ambient air with optical spectroscopy[J]. Spectroscopy and Spectral Analysis, 29, 3199-3203(2009).

    [2] Yuan S, Kan R F, He Y B et al. Tunable diode laser spectroscopy system for carbon dioxide monitoring[J]. Chinese Journal of Lasers, 41, 1208003(2014).

    [3] Cheng Y, Zhao W X, Hu C J et al. Experimental study of the photochemical reaction in the smog chamber using a Chernin multipass[J]. Acta Optica Sinica, 33, 0830001(2013).

    [4] Yao L, Liu W Q, Liu J G et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese Journal of Lasers, 42, 0215003(2015).

    [5] Werle P. Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence[J]. Applied Physics B, 102, 313-329(2010). http://link.springer.com/article/10.1007/s00340-010-4165-9

    [6] Werle P, Mücke R, Slemr F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)[J]. Applied Physics B, 57, 131-139(1993). http://link.springer.com/article/10.1007/BF00425997

    [7] Zheng C T, Ye W L, Huang J Q et al. Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique[J]. Sensors and Actuators B, 190, 249-258(2014). http://www.sciencedirect.com/science/article/pii/S092540051300991X

    [8] Niu M S, Han P G, Song L K et al. Comparison and application of wavelet transform and Kalman filtering for denoising in δ 13CO2 measurement by tunable diode laser absorption spectroscopy at 2.008 μm [J]. Optics Express, 25, A896-A905(2017).

    [9] Niu M S, Wang G S. The research of δ 13CO2 by use of wavelet de-noising at 2.008 μm based on tunable diode laser absorption spectroscopy [J]. Acta Physica Sinica, 66, 024202(2017).

    [10] Cassidy D T, Reid J. Harmonic detection with tunable diode lasers-two-tone modulation[J]. Applied Physics B, 29, 279-285(1982). http://link.springer.com/article/10.1007/BF00689188

    [11] Reid J, El-Sherbiny M. GarsideB K, et al. Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level[J]. Applied Optics, 19, 3349-3353(1980). http://europepmc.org/abstract/med/20234619

    [12] Webster C R. Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities[J]. Journal of the Optical Society of America B, 2, 1464-1470(1985). http://www.opticsinfobase.org/abstract.cfm?uri=josab-2-9-1464

    [13] Wu S Q, Kimishima T, Kuze H et al. Efficient reduction of fringe noise in trace gas detection with diode laser multipass absorption spectroscopy[J]. Japanese Journal of Applied Physics, 39, 4034-4040(2000). http://adsabs.harvard.edu/abs/2000JaJAP..39.4034W

    [14] Meng Y X, Liu T G, Liu K et al. A modified empirical mode decomposition algorithm in TDLAS for gas detection[J]. IEEE Photonics Journal, 6, 1-7(2014). http://ieeexplore.ieee.org/document/6951343/

    [15] Colominas M A, Schlotthauer G, Torres M E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 14, 19-29(2014). http://www.sciencedirect.com/science/article/pii/S1746809414000962

    [16] Huang N E, Shen Z, Long S R et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London A, 454, 903-995(1998). http://www.jstor.org/stable/53161

    [17] Sun L F, Wang Y C. Soft-sensing of oxygen content of flue gas based on mixed model[J]. Energy Procedia, 17, 221-226(2012). http://www.sciencedirect.com/science/article/pii/S1876610212004237

    [18] Huang X, Huang L, Jung T P et al. Intrinsic mode functions locate implicit turbulent attractors in time in frontal lobe MEG recordings[J]. Neuroscience, 267, 91-101(2014). http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM24613718.aspx

    [19] Huang D S. Effect of sampling on empirical mode decomposition and correction[J]. Journal of Vibration Measurement & Diagnosis, 31, 381-384(2011).

    [20] Rothman L S, Gordon I E, Babikov Y et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4-50(2013). http://www.sciencedirect.com/science/article/pii/S0022407317301073

    Xinqian Guo, Xuanbing Qiu, Wenhai Ji, Ligang Shao, Shuping Liu, Chuanliang Li, Weiguang Ma. Minimization of Interference Fringes in Tunable Diode Laser Absorption Spectrum Based on Empirical Mode Decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(11): 113001
    Download Citation