• Journal of Semiconductors
  • Vol. 45, Issue 4, 041701 (2024)
Xinyu Zhang1, Xuewen Zhang1, Hanwei Hu1, Vanessa Li Zhang2..., Weidong Xiao1, Guangchao Shi1, Jingyuan Qiao1, Nan Huang1, Ting Yu2,3,* and Jingzhi Shang1,**|Show fewer author(s)
Author Affiliations
  • 1Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China
  • 2School of Physics and Technology, Wuhan University, Wuhan 430072, China
  • 3Wuhan Institute of Quantum Technology, Wuhan 430206, China
  • show less
    DOI: 10.1088/1674-4926/45/4/041701 Cite this Article
    Xinyu Zhang, Xuewen Zhang, Hanwei Hu, Vanessa Li Zhang, Weidong Xiao, Guangchao Shi, Jingyuan Qiao, Nan Huang, Ting Yu, Jingzhi Shang. Light-emitting devices based on atomically thin MoSe2[J]. Journal of Semiconductors, 2024, 45(4): 041701 Copy Citation Text show less
    References

    [1] S Manzeli, D Ovchinnikov, D Pasquier et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2, 17033(2017).

    [2] X Wu, X Y Chen, R X Yang et al. Recent advances on tuning the interlayer coupling and properties in van der waals heterostructures. Small, 18, 2105877(2022).

    [3] H Ou, H Matsuoka, J Tempia et al. Spatial control of dynamic p-i-n junctions in transition metal dichalcogenide light-emitting devices. ACS Nano, 15, 12911(2021).

    [4] B Chamlagain, Q Li, N J Ghimire et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. ACS Nano, 8, 5079(2014).

    [5] W Du, P Yu, J T Zhu et al. An ultrathin MoSe2 photodetector with near-perfect absorption. Nanotechnology, 31, 225201(2020).

    [6] W Wen, L S Wu, T Yu. Excitonic lasers in atomically thin 2D semiconductors. ACS Mater Lett, 2, 1328(2020).

    [7] H H Fang, B Han, C Robert et al. Control of the exciton radiative lifetime in van der waals heterostructures. Phys Rev Lett, 123, 067401(2019).

    [8] L Zhang, F C Wu, S C Hou et al. Van der waals heterostructure polaritons with moiré-induced nonlinearity. Nature, 591, 61(2021).

    [9] S A Jia, Z H Jin, J Zhang et al. Lateral monolayer MoSe2-WSe2 p-n heterojunctions with giant built-in potentials. Small, 16, 2002263(2020).

    [10] J W Sun, H T Hu, D Pan et al. Selectively depopulating valley-polarized excitons in monolayer MoS2 by local chirality in single plasmonic nanocavity. Nano Lett, 20, 4953(2020).

    [11] H Henck, D Mauro, D Domaretskiy et al. Light sources with bias tunable spectrum based on van der waals interface transistors. Nat Commun, 13, 3917(2022).

    [12] Y Y Chen, Z Y Liu, J Z Li et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 14, 10258(2020).

    [13] Y Y Chen, Z Y Liu, J Z Li et al. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 14, 15154(2020).

    [14] W D Yao, D Yang, Y Y Chen et al. Layer-number engineered momentum-indirect interlayer excitons with large spectral tunability. Nano Lett, 22, 7230(2022).

    [15] J Horng, T Stroucken, L Zhang et al. Observation of interlayer excitons in MoSe2 single crystals. Phys Rev B, 97, 241404(2018).

    [16] A Y Joe, L A Jauregui, K Pistunova et al. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Phys Rev B, 103, L161411(2021).

    [17] C M Huang, S F Wu, A M Sanchez et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat Mater, 13, 1096(2014).

    [18] P Rivera, J R Schaibley, A M Jones et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat Commun, 6, 6242(2015).

    [19] Y Jin, D H Keum, S J An et al. A van der waals homojunction: Ideal p-n diode behavior in MoSe2. Adv Mater, 27, 5534(2015).

    [20] L Yu, M D Deng, J L Zhang et al. Site-controlled quantum emitters in monolayer MoSe2. Nano Lett, 21, 2376(2021).

    [21] A Branny, G Wang, S Kumar et al. Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning. Appl Phys Lett, 108, 142101(2016).

    [22] E Y Paik, L Zhang, G W Burg et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 576, 80(2019).

    [23] C Anton-Solanas, M Waldherr, M Klaas et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal. Nat Mater, 20, 1233(2021).

    [24] C Y Li, Q F Wang, H Diao et al. Enhanced photoluminescence of monolayer MoSe2 in a double resonant plasmonic nanocavity with fano resonance and mode matching. Laser Photonics Rev, 16, 2100199(2022).

    [25] R Péchou, S A Jia, J Rigor et al. Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope. ACS Photonics, 7, 3061(2020).

    [26] Y X Zhang, W Chen, T Fu et al. Simultaneous surface-enhanced resonant raman and fluorescence spectroscopy of monolayer MoSe2: Determination of ultrafast decay rates in nanometer dimension. Nano Lett, 19, 6284(2019).

    [27] S Dufferwiel, S Schwarz, F Withers et al. Exciton-polaritons in van der waals heterostructures embedded in tunable microcavities. Nat Commun, 6, 8579(2015).

    [28] P Kumar, J Lynch, B K Song et al. light−matter coupling in large-area van der waals superlattices. Nat Nanotechnol, 17, 182(2022).

    [29] E Y Paik, L Zhang, S C Hou et al. High quality factor microcavity for van der waals semiconductor polaritons using a transferrable mirror. Adv Opt Mater, 11, 2201440(2023).

    [30] S Park, D Kim, M K Seo. Plasmonic photonic crystal mirror for long-lived interlayer exciton generation. ACS Photonics, 8, 3619(2021).

    [31] A O A Tanoh, J Alexander-Webber, Y Fan et al. Giant photoluminescence enhancement in MoSe2 monolayers treated with oleic acid ligands. Nanoscale Adv, 3, 4216(2021).

    [32] H V Han, A Y Lu, L S Lu et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano, 10, 1454(2016).

    [33] N Lundt, A Maryński, E Cherotchenko et al. Monolayered MoSe2: A candidate for room temperature polaritonics. 2D Mater, 4, 015006(2017).

    [34] D J Gillard, A Genco, S Ahn et al. Strong exciton-photon coupling in large area MoSe2 and WSe2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition. 2D Mater, 8, 011002(2021).

    [35] M Wurdack, N Lundt, M Klaas et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer. Nat Commun, 8, 259(2017).

    [36] M Waldherr, N Lundt, M Klaas et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nat Commun, 9, 3286(2018).

    [37] Y Zhang, T R Chang, B Zhou et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 9, 111(2014).

    [38] S Tongay, J Zhou, C Ataca et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett, 12, 5576(2012).

    [39] Y F Shi, C X Hua, B Li et al. Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Adv Funct Mater, 23, 1832(2013).

    [40] C Schneider, M M Glazov, T Korn et al. Two-dimensional semiconductors in the regime of strong light−matter coupling. Nat Commun, 9, 2695(2018).

    [41] Z L Ye, T Cao, K O'Brien et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 513, 214(2014).

    [42] J P Echeverry, B Urbaszek, T Amand et al. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys Rev B, 93, 121107(2016).

    [43] K Hao, J F Specht, P Nagler et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat Commun, 8, 15552(2017).

    [44] K F Mak, K L He, C G Lee et al. Tightly bound trions in monolayer MoS2. Nat Mater, 12, 207(2013).

    [45] P Rivera, H Y Yu, K L Seyler et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat Nanotechnol, 13, 1004(2018).

    [46] B Datta, M Khatoniar, P Deshmukh et al. Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nat Commun, 13, 6341(2022).

    [47] J J Pei, J Yang, X B Wang et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano, 11, 7468(2017).

    [48] T Godde, D Schmidt, J Schmutzler et al. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. Phys Rev B, 94, 165301(2016).

    [49] J A Wang, J H Huang, Y H Li et al. Radiative and non-radiative exciton recombination processes in a chemical vapor deposition-grown MoSe2 film. J Phys Chem C, 126, 15319(2022).

    [50] Y F Yu, Y L Yu, C Xu et al. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv Funct Mater, 26, 4733(2016).

    [51] J Wierzbowski, J Klein, F Sigger et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci Rep, 7, 12383(2017).

    [52] M Grzeszczyk, M R Molas, K Nogajewski et al. The effect of metallic substrates on the optical properties of monolayer MoSe2. Sci Rep, 10, 4981(2020).

    [53] A Ciarrocchi, D Unuchek, A Avsar et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der waals heterostructures. Nat Photonics, 13, 131(2019).

    [54] J Hagel, S Brem, E Malic. Electrical tuning of moiré excitons in MoSe2 bilayers. 2D Mater, 10, 014013(2023).

    [55] Z G Lu, D Rhodes, Z P Li et al. Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe2. 2D Mater, 7, 015017(2020).

    [56] C Robert, B Han, P Kapuscinski et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers. Nat Commun, 11, 4037(2020).

    [57] J S Ross, S F Wu, H Y Yu et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun, 4, 1474(2013).

    [58] Y H Tang, J Gu, S Liu et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat Nanotechnol, 16, 52(2021).

    [59] G W Shim, K Yoo, S B Seo et al. Large-area single-layer MoSe2 and its van der waals heterostructures. ACS Nano, 8, 6655(2014).

    [60] W N Du, S A Zhang, Q Zhang et al. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv Mater, 31, 1804894(2019).

    [61] L Y Zhao, Q Y Shang, M L Li et al. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res, 14, 1937(2021).

    [62] E M Purcell, H C Torrey, R V Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev, 69, 37(1946).

    [63] J Z Shang, C X Cong, Z L Wang et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat Commun, 8, 543(2017).

    [64] G Lozano, S R Rodriguez, M A Verschuuren et al. Metallic nanostructures for efficient LED lighting. Light Sci Appl, 5, e16080(2016).

    [65] B Schuler, K A Cochrane, C Kastl et al. Electrically driven photon emission from individual atomic defects in monolayer WS2. Sci Adv, 6, eabb5988(2020).

    [66] D Englund, D Fattal, E Waks et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett, 95, 013904(2005).

    [67] Z Wang, Z G Dong, Y H Gu et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun, 7, 11283(2016).

    [68] M Pelton. Modified spontaneous emission in nanophotonic structures. Nat Photonics, 9, 427(2015).

    [69] J H Kim, H S Lee, G H An et al. Dielectric nanowire hybrids for plasmon-enhanced light−matter interaction in 2D semiconductors. ACS Nano, 14, 11985(2020).

    [70] C Husko, J Kang, G Moille et al. Silicon-phosphorene nanocavity-enhanced optical emission at telecommunications wavelengths. Nano Lett, 18, 6515(2018).

    [71] J M Gerard, B Gayral. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J Light Technol, 17, 2089(1999).

    [72] S Lepeshov, A Krasnok, A Alù. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas. Nanotechnology, 30, 254004(2019).

    [73] C Weisbuch, M Nishioka, A Ishikawa et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett, 69, 3314(1992).

    [74] H Deng, H Haug, Y Yamamoto. Exciton-polariton bose-einstein condensation. Rev Mod Phys, 82, 1489(2010).

    [75] L Lackner, M Dusel, O A Egorov et al. Tunable exciton-polaritons emerging from WS2 monolayer excitons in a photonic lattice at room temperature. Nat Commun, 12, 4933(2021).

    [76] M Wurdack, E Estrecho, S Todd et al. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor. Nat Commun, 12, 5366(2021).

    [77] Z J Jiang, A Ren, Y L Yan et al. Exciton-polaritons and their bose-einstein condensates in organic semiconductor microcavities. Adv Mater, 34, 2106095(2022).

    [78] B Munkhbat, D G Baranov, M Stührenberg et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics, 6, 139(2019).

    [79] J Z Shang, X Y Zhang, V L Zhang et al. Exciton-photon interactions in two-dimensional semiconductor microcavities. ACS Photonics, 10, 7, 2064(2023).

    [80] X Z Liu, T Galfsky, Z Sun et al. Strong light−matter coupling in two-dimensional atomic crystals. Nat Photonics, 9, 30(2015).

    [81] Q Y Li, A Alfrey, J Q Hu et al. Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality. Nat Commun, 14, 1837(2023).

    [82] S Dufferwiel, T P Lyons, D D Solnyshkov et al. Valley-addressable polaritons in atomically thin semiconductors. Nat Photonics, 11, 497(2017).

    [83] O A Ajayi, J V Ardelean, G D Shepard et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater, 4, 031011(2017).

    [84] O Del Pozo-Zamudio, A Genco, S Schwarz et al. Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities. 2D Mater, 7, 031006(2020).

    [85] M Slootsky, X Z Liu, V M Menon et al. Room temperature frenkel-wannier-mott hybridization of degenerate excitons in a strongly coupled microcavity. Phys Rev Lett, 112, 076401(2014).

    [86] D Zheng, S P Zhang, Q Deng et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett, 17, 3809(2017).

    [87] J W Sun, Y Li, H T Hu et al. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. Nanoscale, 13, 4408(2021).

    [88] J X Wen, H Wang, W L Wang et al. Room-temperature strong light−matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett, 17, 4689(2017).

    [89] W J Liu, B Lee, C H Naylor et al. Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett, 16, 1262(2016).

    [90] M M Petrić, M Kremser, M Barbone et al. Tuning the optical properties of a MoSe2 monolayer using nanoscale plasmonic antennas. Nano Lett, 22, 561(2022).

    [91] N Lundt, S Klembt, E Cherotchenko et al. Room-temperature tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun, 7, 13328(2016).

    [92] F R Hu, Z Fei. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv Opt Mater, 8, 1901003(2020).

    [93] M Kaliteevski, I Iorsh, S Brand et al. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B, 76, 165415(2007).

    [94] N Lundt, P Nagler, A Nalitov et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion-polaritons with a MoSe2 monolayer. 2D Mater, 4, 025096(2017).

    [95] T Low, A Chaves, J D Caldwell et al. Polaritons in layered two-dimensional materials. Nat Mater, 16, 182(2017).

    [96] X D Guo, W Lyu, T H Chen et al. Polaritons in van der waals heterostructures. Adv Mater, 35, 2201856(2023).

    [97] D S Liu, J A Wu, H X Xu et al. Emerging light-emitting materials for photonic integration. Adv Mater, 33, 2003733(2021).

    [98] J H Wu, H Ma, P Yin et al. Two-dimensional materials for integrated photonics: Recent advances and future challenges. Small Sci, 1, 2000053(2021).

    [99] D Xiao, G B Liu, W X Feng et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 108, 196802(2012).

    [100] Q H Wang, K Kalantar-Zadeh, A Kis et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 7, 699(2012).

    [101] J Gu, B Chakraborty, M Khatoniar et al. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat Nanotechnol, 14, 1024(2019).

    [102] J S Ross, P Klement, A M Jones et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol, 9, 268(2014).

    [103] S Aftab, H H Hegazy, M Z Iqbal et al. Recent advances in dynamic homojunction PIN diodes based on 2D materials. Adv Mater Interfaces, 10, 2201937(2023).

    [104] J K Huang, J A Pu, C L Hsu et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 8, 923(2014).

    [105] Y H Chang, W J Zhang, Y H Zhu et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 8, 8582(2014).

    [106] M W Iqbal, M Z Iqbal, M F Khan et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep, 5, 10699(2015).

    [107] A Sajid, M J Ford, J R Reimers. Single-photon emitters in hexagonal boron nitride: A review of progress. Rep Prog Phys, 83, 044501(2020).

    [108] J M Cai, A Retzker, F Jelezko et al. A large-scale quantum simulator on a diamond surface at room temperature. Nat Phys, 9, 168(2013).

    [109] J Y Lee, V Leong, D Kalashnikov et al. Integrated single photon emitters. AVS Quantum Sci, 2, 031701(2020).

    [110] Y Arakawa, M J Holmes. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl Phys Rev, 7, 021309(2020).

    [111] M Atatüre, D Englund, N Vamivakas et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater, 3, 38(2018).

    [112] C Chakraborty, L Kinnischtzke, K M Goodfellow et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 10, 507(2015).

    [113] L T Peng, H Chan, P Choo et al. Creation of single-photon emitters in WSe2 monolayers using nanometer-sized gold tips. Nano Lett, 20, 5866(2020).

    [114] K Parto, S I Azzam, K Banerjee et al. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat Commun, 12, 3585(2021).

    [115] C K Dass, M A Khan, G Clark et al. Ultra-long lifetimes of single quantum emitters in monolayer WSe2/hBN heterostructures. Adv Quantum Technol, 2, 1900022(2019).

    [116] S Michaelis de Vasconcellos, D Wigger, U Wurstbauer et al. Single-photon emitters in layered van der waals materials. Phys Status Solidi B, 259, 2100566(2022).

    [117] M Koperski, K Nogajewski, A Arora et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 10, 503(2015).

    [118] A Srivastava, M Sidler, A V Allain et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 10, 491(2015).

    [119] S Schwarz, A Kozikov, F Withers et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater, 3, 025038(2016).

    [120] C Chakraborty, K M Goodfellow, A Nick Vamivakas. Localized emission from defects in MoSe2 layers. Opt Mater Express, 6, 2081(2016).

    [121] H Baek, M Brotons-Gisbert, Z X Koong et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci Adv, 6, eaba8526(2020).

    [122] S Kim, B Zhang, Z R Wang et al. Coherent polariton laser. Phys Rev X, 6, 011026(2016).

    [123] H Deng, G Weihs, D Snoke et al. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc Natl Acad Sci, 100, 15318(2003).

    [124] C Y Wang, Z Kang, Z Zheng et al. Monolayer MoSe2/NiO van der Waals heterostructures for infrared light-emitting diodes. J Mater Chem C, 7, 13613(2019).

    [125] Z X Chen, H Q Liu, X C Chen et al. Wafer-size and single-crystal MoSe2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl Mater Interfaces, 8, 20267(2016).

    Xinyu Zhang, Xuewen Zhang, Hanwei Hu, Vanessa Li Zhang, Weidong Xiao, Guangchao Shi, Jingyuan Qiao, Nan Huang, Ting Yu, Jingzhi Shang. Light-emitting devices based on atomically thin MoSe2[J]. Journal of Semiconductors, 2024, 45(4): 041701
    Download Citation