• Laser & Optoelectronics Progress
  • Vol. 56, Issue 5, 052803 (2019)
Zhenghe Zhang, Zhen Huang, Ruting Chen, Xiaohui Xue, Chunhui Yan, Hengfeng Huang, and Dongyu Li*
Author Affiliations
  • School of Physics Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
  • show less
    DOI: 10.3788/LOP56.052803 Cite this Article Set citation alerts
    Zhenghe Zhang, Zhen Huang, Ruting Chen, Xiaohui Xue, Chunhui Yan, Hengfeng Huang, Dongyu Li. Design of Flame Temperature Measurement Instrument Based on Projective Background-Oriented Schlieren Technique[J]. Laser & Optoelectronics Progress, 2019, 56(5): 052803 Copy Citation Text show less
    Schematic of projective background-oriented schlieren apparatus
    Fig. 1. Schematic of projective background-oriented schlieren apparatus
    Offset of light generated after flow field measurement
    Fig. 2. Offset of light generated after flow field measurement
    Refractive index distribution function and projection
    Fig. 3. Refractive index distribution function and projection
    Flow chart of proposed algorithm
    Fig. 4. Flow chart of proposed algorithm
    Results for each process. (a) Image capture; (b) image filter; (c) correlation analysis; (d) temperature field reconstruction
    Fig. 5. Results for each process. (a) Image capture; (b) image filter; (c) correlation analysis; (d) temperature field reconstruction
    Correlation analysis of images. (a) Correlation function; (b) schematic of correlation analysis process; (c) offset of particles in x-axis direction; (d) offset of particles in y-axis direction
    Fig. 6. Correlation analysis of images. (a) Correlation function; (b) schematic of correlation analysis process; (c) offset of particles in x-axis direction; (d) offset of particles in y-axis direction
    Offset of particles in x-axis direction. (a) Flame tip interception at moment 1; (b) flame tip interception at moment 2; (c) offset of particles in x-axis direction
    Fig. 7. Offset of particles in x-axis direction. (a) Flame tip interception at moment 1; (b) flame tip interception at moment 2; (c) offset of particles in x-axis direction
    Photograph of measurement instrument
    Fig. 8. Photograph of measurement instrument
    Flame tip interception
    Fig. 9. Flame tip interception
    Comparison among flame tip interceptions at different moments. (a) Moment 1; (b) moment 2
    Fig. 10. Comparison among flame tip interceptions at different moments. (a) Moment 1; (b) moment 2
    Particle offset. (a) x-axis; (b) y-axis
    Fig. 11. Particle offset. (a) x-axis; (b) y-axis
    Refractive index gradient at flame tip
    Fig. 12. Refractive index gradient at flame tip
    Refractive index at flame tip
    Fig. 13. Refractive index at flame tip
    Density gradient at flame tip
    Fig. 14. Density gradient at flame tip
    Density at flame tip
    Fig. 15. Density at flame tip
    3D reconstruction of temperature field at flame tip
    Fig. 16. 3D reconstruction of temperature field at flame tip
    Temperature distribution on tangent surface at flame tip
    Fig. 17. Temperature distribution on tangent surface at flame tip
    Zhenghe Zhang, Zhen Huang, Ruting Chen, Xiaohui Xue, Chunhui Yan, Hengfeng Huang, Dongyu Li. Design of Flame Temperature Measurement Instrument Based on Projective Background-Oriented Schlieren Technique[J]. Laser & Optoelectronics Progress, 2019, 56(5): 052803
    Download Citation