• Laser & Optoelectronics Progress
  • Vol. 53, Issue 10, 100901 (2016)
Long Tao*, Wang Yurong, Jiang Shan, Meng Xiangfeng, and Yang Xiulun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.100901 Cite this Article Set citation alerts
    Long Tao, Wang Yurong, Jiang Shan, Meng Xiangfeng, Yang Xiulun. Digital Holographic Imaging with Single Pixel Bucket Detector[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100901 Copy Citation Text show less
    References

    [1] Goodman J W, Lawrence R W. Digital image formation from electronically detected holograms[J]. Appl Phys Lett, 1967, 11(3): 77-79.

    [2] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Appl Opt, 1994, 33(2): 179-181.

    [3] Javidi B, Tajahuerce E. Three-dimensional image processing and recognition[C]. SPIE, 2000, 4043: 2-10.

    [4] Wang Yunxin, Wang Dayong, Yang Yishu, et al. Application and analysis in the biomedicine field using digital holographic technology[J]. Chinese J Lasers, 2014, 41(2): 0209002.

    [5] Wu Yingchun, Wu Xuecheng, Cen Kefa. Development of digital holography in particle field measurement[J]. Chinese J Lasers, 2014, 41(6): 0601001.

    [6] Santoyo F M, Pedrini G, Schedin S, et al. Multi-pulsed digital holography applied to full 3D measurements of dynamic events[C]. SPIE, 2001, 4420: 132-138.

    [7] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Phys Rev A, 2009, 79(5): 053840.

    [8] Shapiro J H. Computational ghost imaging[J]. Phys Rev A, 2008, 78(6): 061802.

    [9] Clemente P, Durán V, Tajahuerce E, et al. Single-pixel digital "ghost" holography[J]. Phys Rev A, 2012, 86(4): 041803.

    [10] Zhang L H, Liang D, Li B, et al. Study of key technology of ghost imaging via compressive sensing for a phase object based on phase-shifting digital holography[J]. Laser Physics Letters, 2015, 12(7): 075202.

    [11] Zhao S M, Wang B, Gong L Y, et al. Improving the atmosphere turbulence tolerance in holographic ghost imaging system by channel coding[J]. J Lightwave Technology, 2013, 31(17): 2823-2828

    [12] Huang D H, Fan W, Li X C, et al. Performance of an optically addressed liquid crystal light valve and its application in optics damage protection[J]. Chin Opt Lett, 2013, 11(7): 072301.

    [13] Loiseauxa B, Huignarda J P, Chante1oup J C, et al. Optically addressed liquid crystal light valves for an adaptative control of amplitude and phase of laser beam[C]. SPIE, 1998, 3297: 37-43.

    [14] Ye Biqing. The characteristics of liquid-crystal spatial light modulatorand its application in holographic measurement[D]. Hangzhou: Zhejiang University, 2006.

    [15] Li Junchang, Song Qinghe, Picart Pascal, et al. Discussion of wavefront reconstruction algorithm of off-axis digital holography[J]. Chinese J Lasers, 2014, 41(2): 0209008.

    [16] Picart P, Leval J. General theoretical formulation of image formation in digital Fresnel holography[J]. J Opt Soc Am A, 2008, 25(7): 1744-1761.

    [17] Shrestha P K, Chun Y T, Chu D. A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles[J]. Light Science & Applications, 2015, 4(3): e259.

    [18] Zhao Rongsheng, Chen Xiangning, Xue Junshi, et al. Optical correlator with optically addressed liquid crystal light valve[J]. Journal of Sichuan Ordnance, 2015, 36(12): 95-98.

    [19] Wang Mengyao, Pan Wei, Luo Bin, et al. Gray scale response of spatial light modulator incorporating ferroelectric liquid crystals[J]. Optics and Precision Engineering, 2007, 15(4): 461-465.

    Long Tao, Wang Yurong, Jiang Shan, Meng Xiangfeng, Yang Xiulun. Digital Holographic Imaging with Single Pixel Bucket Detector[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100901
    Download Citation