• Journal of Infrared and Millimeter Waves
  • Vol. 31, Issue 6, 528 (2012)
ZHAO Li-Min1、2、*, GU Xing-Fa1、2, YU Tao1、2, WAN Wei3, ZHANG Lun1、2, and XIE Yan-Hua1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3724/sp.j.1010.2012.00528 Cite this Article
    ZHAO Li-Min, GU Xing-Fa, YU Tao, WAN Wei, ZHANG Lun, XIE Yan-Hua. A directional thermal radiance model for multiple scattering over surfaces[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 528 Copy Citation Text show less
    References

    [3] Labed J and Stoll M P. Angular variation of land surface spectral emissivity in the thermal infrared: Labor investigation on bare soils[J]. International Journal of Remote Sensing, 1991, 12(11):2299-2310.

    [4] Rees W G, James S P. Angular variation of the infrared emissivity of ice and water surfaces[J]. International Journal of Remote Sensing, 1992, 13(8):2873-2886.

    [5] Cuenca J, Sobrino J A. Experimental measurements for studying angular and spectral variation of thermal infrared emissivity[J]. Appl Opt, 2004, 43(23):4598-4602.

    [6] Franois C, Ottlé C, Prévot L. Analytical parametrisation of canopy emissivity and directional radiance in the thermal infrared: Application on the retrieval of soil and foliage temperatures using two directional measurements[J]. International Journal of Remote Sensing, 1997, 18(2):2587-2621.

    [7] Kimes D S, Smith J A. Directional radiometric measurements of row-crop temperatures[J]. International Journal of Remote Sensing, 1983, 4(2):299-311.

    [8] Li X, Strahler A H, Friedl M A. A conceptual model for effective directional emissivity from non-isothermal surface[J]. IEEE transactions on geoscience and remote sensing, 1999, 37(5):2508-2517.

    [9] Yan G, Jiang L, Wang J, et al. Thermal bidirectional gap probability model for row crop canopies and validation[J]. Science in China Series D: Earth Sciences, 2003, 46(12):1241-1249.

    [10] Chen L, Liu Q, Fan W, et al. A bi-directional gap model for simulating the directional thermal radiance of row crops[J]. Science in China Series D: Earth Sciences, 2002, 45(12):1087-1098.

    [11] Kimes D S. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques[J]. Remote Sensing of Environment, 1983, 13(1):33-55.

    [12] Chen L, Li Z, Liu Q, et al. Definition of component effective emissivity for heterogeneous and non-isothermal surfaces and its approximate calculation[J]. International Journal of Remote Sensing, 2004, 25(1):231-244.

    [13] Yu T, Gu X, Tian G, et al. Modeling directional brightness temperature over a maize canopy in row structure[J]. IEEE transactions on geoscience and remote sensing, 2004, 42(10):2290-2304.

    [14] Sobrino J A, Jiménez-Munoz J C, Verhoef W. Canopy directional emissivity: Comparison between models[J]. Remote Sensing of Environment, 2005, 99(3):304-314.

    [15] Menenti M, Jia L, Li Z L. Multi-angular thermal infrared observations of terrestrial vegetation[M]. in Advances in Land Remote Sensing: System, Modeling, Inversion and Application, S. Liang, Ed., ed Berlin: Springer, 2008: 51-93.

    [17] Chen L F, Zhuang J L, Xu X R, et al. The concept of effective emissivity of nonisothermal mixed pixel and its test[J]. Chinese Science Bulletin, 2000, 45(9):788-795.

    [18] Iziomon M G, Mayer H, Matzarakis A. Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(10):1107-1116.

    ZHAO Li-Min, GU Xing-Fa, YU Tao, WAN Wei, ZHANG Lun, XIE Yan-Hua. A directional thermal radiance model for multiple scattering over surfaces[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 528
    Download Citation