• Laser & Optoelectronics Progress
  • Vol. 62, Issue 10, 1028003 (2025)
Lunming Qin1, Wenquan Mei1, Haoyang Cui1, Houqin Bian1,*, and Xi Wang2
Author Affiliations
  • 1College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China
  • 2School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/LOP241927 Cite this Article Set citation alerts
    Lunming Qin, Wenquan Mei, Haoyang Cui, Houqin Bian, Xi Wang. Improved YOLOv8s Object Detection Algorithm for Remote Sensing Image[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1028003 Copy Citation Text show less
    References

    [1] Shan H L, Wang S Y, Tong J Y et al. Multi-scale optical remote sensing image target detection based on enhanced small target features[J]. Acta Optica Sinica, 44, 0628006(2024).

    [2] Wang Y W, Guo Y, Shao X Y et al. Oriented object detection in remote sensing images based on feature recombination[J]. Acta Optica Sinica, 44, 0628001(2024).

    [3] Li H Y, Xu B Q, Zhang Z Y et al. Small target detection in remote sensing images based on global context information[J]. Acta Optica Sinica, 44, 2428004(2024).

    [4] Cui L Q, Cao H W. Target detection of remote-sensing images based on improved YOLOv5[J]. Computer Engineering, 50, 228-236(2024).

    [5] Zhao Z Q, Zheng P, Xu S T et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 30, 3212-3232(2019).

    [6] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934v1

    [7] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C], 7464-7475(2023).

    [8] Wu L, Chu Y K, Yang H G et al. Sim-YOLOv8 object detection model for DR image defects in aluminum alloy welds[J]. Chinese Journal of Lasers, 51, 1602103(2024).

    [9] He Q, Shen H. Strip object detection method for multiscale optical remote sensing images without anchors[J]. Laser & Optoelectronics Progress, 62, 0428002(2025).

    [10] Wu L B, Gu Y H, Wu W H et al. Remote sensing rotating object detection based on multi-scale feature extraction[J]. Laser & Optoelectronics Progress, 60, 1228010(2023).

    [11] Xu D G, Wang Z Q, Xing K J et al. Remote sensing image target detection algorithm based on improved YOLOv6[J]. Computer Engineering and Applications, 60, 119-128(2024).

    [12] Wei X G, Cao L, Tian S et al. Remote sensing target detection based on multilevel self-attention enhancement[J]. Laser & Optoelectronics Progress, 60, 2028004(2023).

    [13] Yu J Y, Liu S J, Xu T. Research on YOLOv7 remote sensing small target detection algorithm integrating attention mechanism[J]. Computer Engineering and Applications, 59, 167-175(2023).

    [14] Tong Z J, Chen Y H, Xu Z W et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. https://arxiv.org/abs/2301.10051v3

    [15] Talaat F M, ZainEldin H. An improved fire detection approach based on YOLO-v8 for smart cities[J]. Neural Computing and Applications, 35, 20939-20954(2023).

    [16] Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection[C], 10778-10787(2020).

    [17] Ouyang D L, He S, Zhang G Z et al. Efficient multi-scale attention module with cross-spatial learning[C](2023).

    [18] Gevorgyan Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. https://arxiv.org/abs/2205.12740v1

    [19] Zhang X Z, Shen T, Xu D. Remote-sensing image object detection based on improved YOLOv8 algorithm[J]. Laser & Optoelectronics Progress, 61, 1028001(2024).

    [20] Xin S A, Ge H B, Yuan H et al. Improved lightweight underwater target detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 60, 88-99(2024).

    [21] Xia G S, Bai X, Ding J et al. DOTA: a large-scale dataset for object detection in aerial images[C], 3974-3983(2018).

    [22] Xiao Z F, Liu Q, Tang G F et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 36, 618-644(2015).

    [23] Cheng G, Zhou P C, Han J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 7405-7415(2016).

    [24] Zhang H, Zhang S J. Shape-IoU: more accurate metric considering bounding box shape and scale[EB/OL]. https://arxiv.org/abs/2312.17663

    [25] Ma S L, Xu Y, Ma S L et al. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. https://arxiv.org/abs/2307.07662v1

    [26] Duan K W, Bai S, Xie L X et al. CenterNet: keypoint triplets for object detection[C], 6568-6577(2019).

    Lunming Qin, Wenquan Mei, Haoyang Cui, Houqin Bian, Xi Wang. Improved YOLOv8s Object Detection Algorithm for Remote Sensing Image[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1028003
    Download Citation