• Advanced Photonics Nexus
  • Vol. 3, Issue 3, 036007 (2024)
Qi Wu1、2、3, Zhaopeng Xu1、*, Yixiao Zhu2、*, Tonghui Ji1, Honglin Ji1, Yu Yang1, Junpeng Liang1, Chen Cheng1, Gang Qiao1, Zhixue He1, Jinlong Wei1, Qunbi Zhuge2, and Weisheng Hu1、2
Author Affiliations
  • 1Peng Cheng Laboratory, Shenzhen, China
  • 2Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai, China
  • 3University of L’Aquila, Department of Physical and Chemical Sciences, L’Aquila, Italy
  • show less
    DOI: 10.1117/1.APN.3.3.036007 Cite this Article Set citation alerts
    Qi Wu, Zhaopeng Xu, Yixiao Zhu, Tonghui Ji, Honglin Ji, Yu Yang, Junpeng Liang, Chen Cheng, Gang Qiao, Zhixue He, Jinlong Wei, Qunbi Zhuge, Weisheng Hu. Beyond 200-Gb/s O-band intensity modulation and direct detection optics with joint look-up-table-based predistortion and digital resolution enhancement for low-cost data center interconnects[J]. Advanced Photonics Nexus, 2024, 3(3): 036007 Copy Citation Text show less
    References

    [1] M. Chagnon. Optical communications for short reach. J. Lightwave Technol., 37, 1779-1797(2019).

    [2] G. N. Liu et al. IM/DD transmission techniques for emerging 5G fronthaul, DCI, and metro applications. J. Lightwave Technol., 36, 560-567(2018).

    [3] T. Wettlin et al. DSP for high-speed short-reach IM/DD systems using PAM. J. Lightwave Technol., 38, 6771-6778(2020).

    [4] D. Che, X. Chen. Higher-order modulation vs faster-than-Nyquist PAM-4 for datacenter IM-DD optics: an AIR comparison under practical bandwidth limits. J. Lightwave Technol., 40, 3347-3357(2022).

    [5] K. Zhong et al. Digital signal processing for short-reach optical communications: a review of current technologies and future trends. J. Lightwave Technol., 36, 377-400(2018).

    [6] Q. Wu et al. Four-dimensional direct detection receiver enabling Jones-space field recovery with phase- and polarization-diversity. Photonics Res., 12, 399-410(2024).

    [7] Z. Xu et al. Joint equalization of linear and nonlinear impairments for PAM4 short-reach direct detection systems. IEEE Photonics Technol. Lett., 33, 425-428(2021).

    [8] Q. Wu et al. 405-GBd OOK and 201-GBd PAM-4 IM/DD optics at record faster-than-Nyquist ratios of 226.6% and 62.1% enabled by advanced noise whitening, ACPPOEM-1007-5(2023).

    [9] Z. Tan et al. A 70 Gbps NRZ optical link based on 850 nm band-limited VCSEL for data-center intra-connects. Sci. China Inf. Sci., 61, 080406(2018).

    [10] Q. Wu et al. Gradient descent noise whitening techniques for short reach IM-DD optical interconnects with severe bandwidth limitation. Opt. Express, 32, 1715-1727(2024).

    [11] K. Kikuchi. Fundamentals of coherent optical fiber communications. J. Lightwave Technol., 34, 157-179(2016).

    [12] IEEE P802.3df 200  Gb/s, 400  Gb/s, 800  Gb/s, and 1.6  Tb/s Ethernet TaskForce(2022). https://www.ieee802.org/3/df/index.html

    [13] X. Pang et al. 200 Gbps/lane IM/DD technologies for short reach optical interconnects. J. Lightwave Technol., 38, 492-503(2020).

    [14] F. Zhang et al. Up to single lane 200G optical interconnects with silicon photonic modulator, Th4A.6(2019).

    [15] D. Zou et al. Amplifier-less transmission of beyond 100-Gbit/s/λ signal for 40-km DCI-edge with 10G-class O-band DML. J. Lightwave Technol., 38, 5649-5655(2020). https://doi.org/10.1109/JLT.2020.3004007

    [16] O. Ozolins et al. Optical amplification-free 200 Gbaud on-off keying link for intra-data center communications, Th4A.6(2022).

    [17] D. Che, X. Chen. Modulation format and digital signal processing for IM-DD optics at post-200G era. J. Lightwave Technol., 42, 588-605(2024).

    [18] D. Che, Q. Hu, W. Shieh. Linearization of direct detection optical channels using self-coherent subsystems. J. Lightwave Technol., 34, 516-524(2016).

    [19] K. Wang et al. Mitigation of pattern-dependent effect in SOA at O-band by using DSP. J. Lightwave Technol., 38, 590-597(2020).

    [20] K. Wang et al. Mitigation of SOA-induced nonlinearity with the aid of deep learning neural networks. J. Lightwave Technol., 40, 979-986(2022).

    [21] S. Murphy et al. High dynamic range 100G PON enabled by SOA preamplifier and recurrent neural networks. J. Lightwave Technol., 41, 3522-3532(2023).

    [22] G. P. Agrawal, N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron., 25, 2297-2306(1989).

    [23] J. Yu, P. Jeppesen. Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter. J. Lightwave Technol., 19, 1316-1325(2001).

    [24] M. Xiang et al. Advanced DSP enabled C-band 112  Gbit/s/λ PAM-4 transmissions with severe bandwidth-constraint. J. Lightwave Technol., 40, 987-996(2022). https://doi.org/10.1109/JLT.2021.3125336

    [25] A. Rezania, J. Cartledge. Transmission performance of 448  Gb/s single-carrier and 1.2  Tb/s three-carrier superchannel using dual-polarization 16-QAM with fixed LUT based MAP detection. J. Lightwave Technol., 33, 4738-4745(2015). https://doi.org/10.1109/JLT.2015.2467187

    [26] P. Gou et al. Nonlinear look-up table predistortion and chromatic dispersion precompensation for IM/DD PAM-4 transmission. IEEE Photonics J., 9, 1-7(2017).

    [27] Y. Tu et al. C-band 200  Gbit/s/λ PAM-4 transmission over 2-km SSMF using look-up-table pre-distortion combined with nonlinear Tomlinson–Harashima pre-coding. Opt. Exp., 30, 15416-15427(2022). https://doi.org/10.1364/OE.457629

    [28] M. Yin et al. Transmission of a 56-Gbit/s PAM4 signal with low-resolution DAC and pre-equalization only over 80 km fiber in C-band IM/DD systems for optical interconnects. Opt. Lett., 46, 5615-5618(2021). https://doi.org/10.1364/OL.441598

    [29] M. Yin et al. Pre-equalized DMT signal transmission utilizing low-resolution DAC with channel response dependent noise shaping technique. J. Lightwave Technol., 41, 3065-3073(2023).

    [30] L. Shu et al. Application analysis of clipping and digital resolution enhancer in high-speed direct-detection PAM4 transmission. Opt. Exp., 28, 17841-17852(2020).

    [31] F. Li et al. Noise shaping enhanced DMT signal transmission utilizing low-resolution DAC. IEEE Photonics J., 13, 7900207(2021).

    [32] L. Shu et al. Performance investigation of error-feedback noise shaping in low-resolution high-speed IM/DD and coherent transmission systems. J. Lightwave Technol., 40, 3669-3680(2022).

    [33] H. Huang et al. Low-resolution optical transmission using joint shaping technique of signal probability and quantization noise. Chin. Opt. Lett., 21, 050602(2023).

    [34] W. A. Ling. Shaping quantization noise and clipping distortion in direct-detection discrete multitone. J. Lightwave Technol., 32, 1750-1758(2014).

    [35] M. Yin et al. Low-cost O-band inter-datacenter interconnect utilizing 4-bit resolution digital-to-analog converter for PAM-4 signal generation. Opt. Exp., 29, 31527-31536(2021).

    [36] M. Yin et al. Multi-band DFT-S 100  Gb/s 32 QAM-DMT transmission in intra-DCI using 10G-class EML and low-resolution DAC. Opt. Exp., 30, 32742-32751(2022). https://doi.org/10.1364/OE.462952

    [37] J. Jiang et al. Generation of high-speed PAM-4 signal with 3-bit DAC enabled by CRD-NS in optical interconnect. Opt. Exp., 31, 21153-21160(2023).

    [38] Y. Yoffe et al. Low-resolution digital pre-compensation enabled by digital resolution enhancer. J. Lightwave Technol., 37, 1543-1551(2019).

    [39] M. Hout, S. Heide, C. Okonkwo. Experimental validation of clipping combined with digital resolution enhancer for high speed optical transmission, 1-3(2019).

    [40] M. Hout, S. Heide, C. Okonkwo. Digital resolution enhancer employing clipping for high-speed optical transmission. J. Lightwave Technol., 38, 2897-2904(2020).

    [41] S. Almonacil, F. Boitier, P. Layec. Performance model and design rules for optical systems employing low-resolution DAC/ADC. J. Lightwave Technol., 38, 3007-3014(2020).

    [42] Y. Yoffe, E. Wohlgemuth, D. Sadot. Performance optimization of high speed DACs using DSP. J. Lightwave Technol., 38, 3096-3105(2020).

    [43] Y. Yoffe, E. Wohlgemuth, D. Sadot. Low-resolution digital pre-compensation for high-speed optical links based on dynamic digital-to-analog conversion. J. Lightwave Technol., 37, 882-888(2019).

    [44] Y. Hou et al. Joint pre-compensation with DRE and THP for low-resolution data center optical interconnect. Proc. SPIE, 12614, 126140W(2022).

    [45] Y. Yoffe, E. Wohlgemuth, D. Sadot. Low resolution pre-compensation for DCI based on dynamic quantization, SpM2G.3(2018).

    [46] M. Hout, S. Heide, C. Okonkwo. Kramers–Kronig receiver with digitally added carrier combined with digital resolution enhancer. J. Lightwave Technol., 40, 1400-1406(2022).

    [47] R. Patel et al. Simplified self-coherent FSO transmission boosted by digital resolution enhancer. J. Lightwave Technol., 41, 5958-5965(2023).

    [48] C. Cheng et al. 4-bit DAC based 6.9  Gb/s PAM-8 UOWC system using single-pixel mini-LED and digital pre-compensation. Opt. Exp., 30, 28014-28023(2022). https://doi.org/10.1364/OE.462259

    [49] L. Zhang, F. R. Kschischang. Staircase codes with 6% to 33% overhead. J. Lightwave Technol., 32, 1999-2002(2014).

    Qi Wu, Zhaopeng Xu, Yixiao Zhu, Tonghui Ji, Honglin Ji, Yu Yang, Junpeng Liang, Chen Cheng, Gang Qiao, Zhixue He, Jinlong Wei, Qunbi Zhuge, Weisheng Hu. Beyond 200-Gb/s O-band intensity modulation and direct detection optics with joint look-up-table-based predistortion and digital resolution enhancement for low-cost data center interconnects[J]. Advanced Photonics Nexus, 2024, 3(3): 036007
    Download Citation