• Journal of Innovative Optical Health Sciences
  • Vol. 1, Issue 2, 157 (2008)
SHOKO NIOKA1、*, JOSEPH I. TRACY2, SHANE RAINES3, SCOTT BUNCE4, and BRITTON CHANCE1
Author Affiliations
  • 1Department of Biochemistry-Biophysics
  • 2Department of Neurology and Radiology, Thomas Jefferson University
  • 3Biostatistics, University of Pennsylvania, PA, USA
  • 4Department of Psychology, Drexel University Philadelphia, PA, USA
  • show less
    DOI: Cite this Article
    SHOKO NIOKA, JOSEPH I. TRACY, SHANE RAINES, SCOTT BUNCE, BRITTON CHANCE. ANAGRAM PROBLEM-SOLVING AND LEARNING IN ANTERIOR PREFRONTAL CORTEX[J]. Journal of Innovative Optical Health Sciences, 2008, 1(2): 157 Copy Citation Text show less
    References

    [1] Ramnani, N. and Owen, A. M., “Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging,” Nat. Rev. Neurosci. 5, 184–194 (2004).

    [2] Rolls, E. T., “The orbitofrontal cortex and reward,” Cereb. Cortex 10, 284–294 (2000).

    [3] Christoff, K. and Gabrieli, J. D. E. “The frontopolar cortex and human cognition: Evidence for a rostrocaudal heirarchical organisation within the human prefrontal cortex,” Psychobiology 28, 168–186 (2000).

    [4] Koechlin, E., Corrado, G., Pietrini, P. and Grafman, J., “Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning,” Proc. Natl. Acad. Sci. 97, 7651–7656 (2000).

    [5] Pasupathy, A. and Miller, E. K., “Different time courses of learning-related activity in the prefrontal cortex and striatum,” Nature 433, 873–876 (2005).

    [6] Braver, T. S. and Bongiolatti, S. R., “The role of frontopolar cortex in subgoal processing during working memory,” Neuroimage 15, 523–536 (2002).

    [7] Simpson, J. R., Snyder, A. Z., Gusnard, D. A. and Raichle, M. E., “Emotion-induced changes in human medial prefrontal cortex: I. During cognitive task performance,” Proc. Natl. Acad. Sci. 98, 683–687 (2001).

    [8] Fuster, J. M., “The prefrontal cortex — an update: Time is of the essence,” Neuron. 30, 319–333 (2001).

    [9] Cabeza, R. and Nyberg, L., “Imaging cognition II: An empirical review of 275 PET and fMRI studies,” J. Cogn. Neurosci. 12, 1–47 (2000).

    [10] Deppe,M., Schwindt,W., Plabmann, H. and Kenning, P., “Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making,” J. Neuroimaging 15, 171–182 (2005).

    [11] Petersen, S. E., van Mier, H., Fiez, J. A. and Raichle, M. E., “The effects of practice on the functional anatomy of task performance,” Proc. Natl. Acad. Sci. 95, 853–860 (1998).

    [12] Kelly, A. M. C. and Garavan, H., “Human functional neuroimaging of brain changes associated with practice,” Cerebral Cortex 15, 1089–1102 (2005).

    [13] Smith, R. W. and Kounios, J., “All-or-none processing revealed by speed-accuracy decomposition,” J. Exp. Psychol.: Learning, Memory Cognition 22, 1443–1462 (1996).

    [14] Tracy, J., Faro, S. S., Mohammed, F., Pinus, A., Christensen, H. and Burkland, D., “A comparison of ‘early’ and ‘late’ stage brain activation during brief practice of a simple motor task,” Cogn. Brain Res. 10, 303–316 (2001).

    [15] Tracy, J. I., Madi, S., Flanders, A., Natale, P., Pyrros, A., Laskas, J. W. et al., “Brain structures responsive to masterig a complex motor skill,” Cogn. Neurosci. Soc. Conf. Supplement A100 (2002).

    [16] Hoshi, Y. and Tamura, M., “Detection of hynamic changes in cerebral oxygenation coupled to neurnal funciton during mental tasks in man,” Neurosci. Lett. 150, 5–8 (1993).

    [17] Kato, T., Kamei, S., Takashima, S. and Ozaki, T., “Human visual cortical function during photonic stimulation monitoring by means of near- infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13, 516–520 (1993).

    [18] Kawashima, R., Yamada, K., Kinomura, S., Yamaguchi, T., Matsui, K. and Yoshioka, S., “Regional cerebral blood flow changes of motor areas and prefrontal areas in human related to ipsilateral and contralateral hand movement,” Brain Res. 623, 33– 40 (1993).

    [19] Maki, A., Yamashita, Y., Ito, Y., Watanabe, E., Mayanagi, Y. and Koizumi, H., “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).

    [20] Yodh, A. and Chance, B., “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).

    [21] Villringer, A. and Chance, B., “Non-invasive optical spectroscopy and imaging of human brain function,” Trends. Nuerosci. 20, 435–442 (1997).

    [22] Matsuo, K., Kato, T., Fukusa, M. and Kato, N., “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci. 12, 465–471 (2000).

    [23] Kleinschmidt, A., Oblig, H., Requardt, M., Merbodt, K. D., Dimagl, U., Villringer A. et al., “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 16, 817–826 (1996).

    [24] Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A. and Shulman, G. L., “A default mode of brain function,” Proc. Natl. Acad. Sci. 98, 676– 682 (2001).

    [25] Nioka, S., Luo, Q. and Chance, B., “Human brain functional imaging with reflectance CWS,” Adv. Exp. Med. Biol. 428, 237–242 (1997).

    [26] Siegel, A. M., Culver, J. P., Mandeville, J. B. and Boas, D. A., “Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation,” Phys. Med. Biol. 48, 1391–1403 (2003).

    [27] Duncan, A., Meek, J. H., Clemence, M., Elwell, C. E., Fallon, P., Tyszczuk, L. et al., “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 389, 889–894 (1996).

    [28] Thorndike, E. L. and Lorge, I., The Teacher’s Wordbook of 30,000 Words (Teachers College Bureau of Publications, 1944).

    [29] Gusnard, D. A., Akbudak, E., Shulman, G. L. and Raichle M. E., “Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function,” Proc. Natl. Acad. Sci. 98, 4259–4264 (2001b).

    [30] Gusnard, D. A. and Raichle, M. E., “Searching for a baseline: Functional imaging and the resting human brain,” Nat. Rev. Neurosci. 10, 685–694 (2001a).

    [31] Frith, C. D. and Frith, U., “Interacting minds-biological basis,” Science 286, 1692– 1695 (1999).

    [32] Seidler, R. D., Purushotham, A., Kin, S. G., Ugurbil, K., Willinngham, D. and Ashe, J., “Cerebellum activation associated with performance change but not motor learning,” Science 296, 2043–2046 (2002).

    [33] Andersen, J. R., “Automaticity and the ACT theory,” Am. J. Psychol. 105, 165–180 (2002).

    [34] Dehaene, S., Posner, M. and Tucker, D., “Localization of neural system for error detection and compensation,” Psychol. Sci. 5, 303–305 (1994).

    [35] Frith, C. D., Friston, P. F., Liddle, R. S. and Frackowiack, R. S., “Willed action and the prefrontal cortex in man: A study with PET,” Proc. R. Soc. London 244, 241–246 (1991).

    [36] Rauch, S. L., Savage, C., Brown, R., Curran, H. D., Alpert, T., Kendrick, N., Fischman, A. and Kosslyn, S. M., “A PET investigation of implicit and explicit sequence learning,” Hum. Brain Mapping 3, 271–286 (1995).

    [37] Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Sasaki, Y. and Putz, B., “Transition of brain activation from frontal to parietal areas in visumotor sequence learning,” J. Neurosci. 18, 1827–1840 (1998).

    [38] Goldman-Rakic, P. S., “Circuitry of primate prefrontal cortex and regulation of behavior by representational memory,” In Plum, F., Mountcastle, V. B. (eds.), The Nervous System, Vol. V, Higher Functions of the Brain 1 (American Physiological Society, Bethesda, MD, 1987), 373–417.

    [39] McCarthy, G., Blamire, A. M., Puce, A., Nobre, A. C., Bloch, G., Hyder, F. et al., “Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task,” Proc. Natl. Acad. Sci. 91, 8690–8694 (1994).

    [40] Petrides, M., “Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey,” J. Neurosci. 15, 359–375 (1995).

    [41] Jansma, J. M., Ramsey, N. F., Slagter, H. A. and Kahn, R. S., “Functional anatomical correlates of controlled and automatic processing,” J. Cog. Neurosci. 13, 730–743 (2001).

    [42] Kahnemann, D. and Treisman, A., Changing Views of Attention and Automaticity (Academic, NY, 1984).

    [43] Schneider, W. and Shiffrin, R. M., “Controlled and automatic human information processing. I. Detection, search and attention,” Psychol. Rev. 84, 1–66 (1977).

    [44] Beauchamp, M. H., Dagher, A., Aston, J. A. and Doyon, J., “Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task,” Neuroimage 20, 1649–1660 (2003).

    [45] Fletcher, P., Buchel, C., Josephs, O., Friston, K. and Dolan, R., “Learning-related neuronal responses in prefrontal cortex studied with functional neuroimaging,” Cerebral Cortex 9, 168–178 (1991).

    [46] Damasio, A. R. and Damasio, H., Mind and Brain (Scientific American, W. H. Freeman and Company, NY, 1993).

    [47] Raichle, M., Fiez, E., Videen, J. A., MacLeod, T.O., Pardo, A. K., Fox, J. V. et al., “Practice related changes in human brain functional anatomy during nonmotor learning,” Cerebral Cortex 4, 8–26 (1994).

    [48] Fiez, J. A., Raichle, M. E., Balota, D. A., Tallal, P. and Peterson, P. E., “PET activation of posterior temporal regions during auditory word presentation and verb generation,” Cerebral Cortex 6, 1–10 (1996).

    [49] Gur, C. R., Gur, R. E., Skolnick, B., Resnick, S., Silver, F., Chawluk, J. et al., “Effects of task difficulty on regional cerebral blood flow: Relationships with anxiety and performance,” Psychophysiology 25, 392–399 (1988).

    [50] Houtz, J. and Frankel, A., “Hemisphericity and problem-solving ability,” Percept. Mot. Skills 66, 771–774 (1988).

    [51] Cavalli, M., De Renzi, E., Faglioni, P. and Vitale, A., “Impairment of right brain-damages patients on a linguistic cognitive task,” Cortex 17, 545–555 (1981).

    [52] Baddley, A., “Working memory,” Science 255, 556–559 (1992).

    SHOKO NIOKA, JOSEPH I. TRACY, SHANE RAINES, SCOTT BUNCE, BRITTON CHANCE. ANAGRAM PROBLEM-SOLVING AND LEARNING IN ANTERIOR PREFRONTAL CORTEX[J]. Journal of Innovative Optical Health Sciences, 2008, 1(2): 157
    Download Citation