• Laser & Optoelectronics Progress
  • Vol. 53, Issue 1, 10001 (2016)
Jia Yuechen* and Chen Feng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.010001 Cite this Article Set citation alerts
    Jia Yuechen, Chen Feng. Advances in Dielectric Crystal Waveguides Produced by Direct Femtosecond Laser Writing[J]. Laser & Optoelectronics Progress, 2016, 53(1): 10001 Copy Citation Text show less
    References

    [1] M L Calvo. Optical Waveguides: From Theory to Applied Technologies[M]. New York: CRC Press, 2007.

    [2] W Sohler, H Hu, R Ricken, et al.. Integrated optical devices in lithium niobate[J]. Opt Photon News, 2008, 19(1): 24-31.

    [3] C Grivas. Optically pumped planar waveguide lasers, part I: Fundamentals and fabrication techniques[J]. Prog Quantum Electron, 2011, 35(6): 159-239.

    [4] J L O′Brien, A Furusawa, J Vuckovic. Photonic quantum technologies[J]. Nat Photon, 2009, 3(12): 687-695.

    [5] H Schmidt, A R Hawkins.The photonic integration of non-solid media using optofluidics[J]. Nat Photon, 2011, 5(10): 598- 604.

    [6] R O sellame, G Cerullo, R Ramponi. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials[M]. Berlin: Springer Press, 2012.

    [7] R R Gattass, E Mazur. Femtosecond laser micromachining in transparent materials[J]. Nat Photon, 2008, 2(4): 219-225.

    [8] Y Zhang, Q Chen, H Xia, et al.. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435-448.

    [9] Y Shimotsuma, P G Kazansky, J R Qiu, et al.. Self-organized nanograting in glass irradiated by ultrashort light pulses[J]. Phys Rev Lett, 2003, 91(24): 247405.

    [10] Y Li, Y P Dou, R An, et al.. Permanent computer-generated holograms embedded in silica glass by femtosecond laser pulses [J]. Opt Express, 2005, 13(7): 2433-2438.

    [11] Y Cheng, K Sugioka, K Midorikawa. Microfluidic laser embeddedin glass by three- dimensional femtosecond laser microprocessing[J]. Opt Lett, 2004, 29(17): 2007-2009.

    [12] K M Davis, K Miura, N Sugimoto, et al.. Writing waveguides in glass with a femtosecond laser[J]. Opt Lett, 1996, 21(21): 1729- 1731.

    [13] M Ams, G D Marshall, P Dekker, et al.. Ultrafast laser written active devices[J]. Laser Photon Rev, 2009, 3(6): 535-544.

    [14] G A Torchia, P F Meilan, A Rodenas, et al.. Femtosecond laser written surface waveguides fabricated in Nd∶YAG ceramics [J]. Opt Express, 2007, 15(20): 13266-13271.

    [15] A Zoubir, C Lopez, M Richardson, et al.. Femtosecond laser fabrication of tubular waveguides in poly (methyl methacrylate) [J]. Opt Lett, 2004, 29(16): 1840-1842.

    [16] W Yang, P Kazansky, Y Svirko. Non-reciprocal ultrafast laser writing[J]. Nat Photon, 2008, 2(2): 99-104.

    [17] A G Okhrimchuk, A V shestakov, I Khrushchev, et al.. Depressed cladding, buried waveguide laser formed in a YAG∶Nd3+ crystal by femtosecond laser writing[J]. Opt Lett, 2005, 30(17): 2248-2250.

    [18] J Burghoff, C Grebing, S Nolte, et al.. Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate [J]. Appl Phys Lett,2006, 89(8): 081108.

    [19] Bai Jing, Long Xuewen, Liu Xin, et al.. Femtosecond laser written waveguide in Yb3+ phosphate glass and waveguide lasing [J]. Acta Optica Sinica, 2014, 34(4): 0432003.

    [20] H Sun, F He, Z Zhou, et al.. Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses[J]. Opt Lett, 2007, 32(11): 1536-1538.

    [21] D G Lancaster, S Gross, H Ebendorff, et al.. Fifty percent internal slope efficiency femtosecond direct-written Tm3+∶ZBLAN waveguide laser[J]. Opt Lett, 2011, 36(9): 1587-1589.

    [22] G Marshall, A Politi, J Matthews, et al.. Laser written waveguide photonic quantum circuits[J]. Opt Express, 2009, 17(15): 12546-12554.

    [23] T T Fernandez, S M Eaton, G Della Valle, et al.. Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass[J]. Opt Express, 2010, 18(19): 20289-20297.

    [24] H Zhang, S Eaton, J Li, et al.. Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass[J]. Opt Lett, 2006, 31(23): 349-351.

    [25] V Apostolopoulos, L Laversenne, T Colomb, et al.. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+∶Sapphire[J]. Appl Phys Lett, 2004, 85(7): 1122-1124.

    [26] L Gui, B Xu, T C Chong. Microstructure in lithium niobate by use of focused femtosecond laser pulses[J]. IEEE Photon Technol Lett, 2004, 16(5): 1337-1339.

    [27] A Rodenas, G A Torchia, G Lifante, et al.. Refractive index change mechanisms in femtosecond laser written ceramic Nd∶ YAG waveguides: Micro-spectroscopy experiments and beam propagation calculations[J]. Appl Phys B, 2009, 95(1): 85-96.

    [28] S Campbell, R R Thomson, D P Hand, et al.. Frequency- doubling in femtosecond laser inscribed periodically- poled potassium titanyl phosphate waveguides[J]. Opt Express, 2007, 15(25): 17146-17150.

    [29] S Zhang, J Yao, W Liu, et al.. Second-harmonic generation to green using ultrafast fibre source and femtosecond written periodically poled waveguide[J]. Electron Lett, 2010, 46(18): 1290-1291.

    [30] F M Bain, A A Lagatsky, R R Thomson, et al.. Ultrafast laser inscribed Yb∶KGd(WO4)2 and Yb∶KY(WO4)2 channel waveguide lasers[J]. Opt Express, 2009, 17(25): 22417-22422.

    [31] S J Beecher, R R Thomson, D T Reid, et al.. Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications[J]. Opt Lett, 2011, 36(23): 4548-4550.

    [32] T Calmano, J Siebenmorgen, F Reichert, et al.. Crystalline Pr∶SrAl12O19 waveguide laser in the visible spectral region[J]. Opt Lett, 2011, 36(23): 4620-4622.

    [33] Y Jia, F Chen, J R Vazquez de Aldana. Efficient continuous-wave laser operation at 1064 nm in Nd∶YVO4 cladding waveguides produced by femtosecond laser inscription[J]. Opt Express, 2012, 20(15): 16801-16806.

    [34] Y Tan, A Rodenas, F Chen, et al.. 70% slope efficiency from an ultrafast laser-written Nd∶GdVO4 channel waveguide laser [J]. Opt Express, 2010, 18(24): 24994-24999.

    [35] N N Dong, Y Tan, A Benayas, et al.. Femtosecond laser writing of multifunctional optical waveguides in a Nd∶YVO4+KTP hybrid system[J]. Opt Lett, 2011, 36(6): 975-977.

    [36] C Zhang, N N Dong, J Yang, et al.. Channel waveguide lasers in Nd∶GGG crystals fabricated by femtosecond laser inscription [J]. Opt Express, 2011, 19(13): 12503-12508.

    [37] N N Dong, J M de Mendivil, E Cantelar, et al.. Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides[J]. Appl Phys Lett, 2011, 98(18): 181103.

    [38] T Calmano, S Müller. Crystalline waveguide lasers in the visible and near-infrared spectral range[J]. IEEE J Sel Top Quantum Electron, 2015, 21(1): 1602213.

    [39] F Chen, J R Vazquez de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser Photon Rev, 2014, 8(2): 251-275.

    [40] D Choudhury, J R Macdonald, A K Kar. Ultrafast laser inscription: Perspectives on future integrated applications[J]. Laser Photon Rev, 2014, 8(6): 827-846.

    [41] J U Thomas, M Heinrich, P Zeil, et al.. Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform[J]. Phys Status Solidi A, 2011, 208(2): 276-283.

    [42] R Osellame, M Lobino, N Chiodo, et al.. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient[J]. Appl Phys Lett, 2007, 90(24): 241107.

    [43] S Gross, M Dubov, M J Withford. On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics [J]. Opt Express, 2015, 23(6): 7767-7770.

    [44] Y Jia, C Cheng, J R Vazquez de Aldana, et al.. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes[J]. Sci Rep, 2014, 4:5988.

    [45] G Salamu, F Jipa, M Zamfirescu, et al.. Cladding waveguides realized in Nd∶YAG ceramic by direct femtosecond-laser writing with a helical movement technique[J]. Opt Mater Express, 2014, 4(4): 790-797.

    [46] A Rodenas, A Benayas, J R Macdonald, et al.. Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG[J]. Opt Lett, 2011, 36(17): 3395-3397.

    [47] G A Torchia, A Rodenas, A Benayas, et al.. Highly efficient laser action in femtosecond-written Nd∶yttrium aluminum garnet ceramic waveguides[J]. Appl Phys Lett, 2008, 92(11): 111103.

    [48] J Siebenmorgen, K Petermann, G Huber, et al.. Femtosecond laser written stress-induced Nd∶Y3Al5O12 (Nd∶YAG) channel waveguide laser[J]. Appl Phys B, 2009, 97(2): 251-255.

    [49] T Calmano, J Siebenmorgen, O Hellmig, et al.. Nd∶YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing[J]. Appl Phys B, 2010, 100(1): 131-135.

    [50] H Liu, Y Jia, J R Vazquez de Aldana, et al.. Femtosecond laser inscribed cladding waveguides in Nd∶YAG ceramics: Fabrication, fluorescence imaging and laser performance[J]. Opt Express, 2012, 20(17): 18620-18629.

    [51] Y Ren, G Brown, A Rodenas, et al.. Mid-infrared waveguide lasers in rare-earth-doped YAG[J]. Opt Lett, 2012, 37(16): 3339- 3341.

    [52] Tang Wenlong, Song Qiongge, Xu Qing′an, et al.. Study on writing of double line waveguide in Yb∶YAG with ultrafast laser [J]. Acta Optica Sinica, 2014, 34(12): 1232002.

    [53] W F Silva, C Jacinto, A Benayas, et al.. Femtosecond- laser- written, stress- induced Nd∶YVO4 waveguides preserving fluorescence and Raman gain[J]. Opt Lett, 2010, 35(7): 916-918.

    [54] Y Ren, N Dong, J Macdonald, et al.. Continuous wave channel waveguide lasers in Nd∶LuVO4 fabricated by direct femtosecond laser writing[J]. Opt Express, 2012, 20(3): 1969-1974.

    [55] Y Jia, F Chen, J R Vazquez de Aldana. Efficient continuous-wave laser operation at 1064 nm in Nd∶YVO4 cladding waveguides produced by femtosecond laser inscription[J]. Opt Express, 2012, 20(15): 16801-16806.

    [56] Y Tan, Y Jia, F Chen, et al.. Simultaneous dual-wavelength lasers at 1064 nm and 1342 nm in femtosecond-laser-written Nd∶YVO4 channel waveguides[J]. J Opt Soc Am B, 2011, 28(7): 1607-1610.

    [57] J Bai, G Cheng, X Long, et al.. Polarization behavior of femtosecond laser written optical waveguides in Ti∶Sapphire[J]. Opt Express, 2012, 20(14): 15035-15044.

    [58] A Benayas, D Jaque, B McMillen, et al.. Thermal stability of microstructural and optical modifications induced in Sapphire by ultrafast laser filamentation[J]. J Appl Phys, 2010, 107(3): 033522.

    [59] C Grivas, C Corbari, G Brambilla, et al.. Tunable, continuous- wave Ti∶Sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses[J]. Opt Lett, 2012, 37(22): 4630-4632.

    [60] Liu Shuang, Liu Xin, Tang Wenlong, et al.. Study of Ti∶Sapphire double line waveguide written by femtosecond laser[J]. Chinese J Lasers, 2015, 42(2): 0203001.

    [61] L Gui, B Xu, T C Chong. Microstructure in lithium niobate by use of focused femtosecond laser pulses[J]. IEEE Photon Technol Lett, 2004, 16(5): 1337-1339.

    [62] J Burghoff, S Nolte, A Tunnermann. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Appl Phys A, 2007, 89(1): 127-132.

    [63] R Osellame, M Lobino, N Chiodo, et al.. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient[J]. Appl Phys Lett, 2007, 90(24): 241107.

    [64] M Tejerina, G A Torchia. MATFESA: Strain and refractive index field estimationafter femtosecond laser interaction with transparent material[J]. Appl Phys A, 2013, 110(3): 591-594.

    [65] Y L Lee, N E Yu, C Jung, et al.. Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses[J]. Appl Phys Lett, 2006, 89(17): 171103.

    [66] A Rodenas, A H Nejadmalayeri, D Jaque, et al.. Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing[J]. Opt Express, 2008, 16(18): 13979-13989.

    [67] Y Liao, J Xu, Y Cheng, et al.. Electro-optic integration of embedded electrodesand waveguides in LiNbO3 using a femtosecond laser[J]. Opt Lett, 2008, 33(19): 2281-2283.

    [68] J Thomas, M Heinrich, J Burghoff, et al.. Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate [J]. Appl Phys Lett, 2007, 91(15): 151108.

    [69] A Rodenas, L M Maestro, M O Ramirez, et al.. Anisotropic lattice changes in femtosecond laser inscribed Nd3+∶MgO∶LiNbO3 optical waveguides[J]. J Appl Phys, 2009, 106(1): 013110.

    [70] M Heinrich, A Szameit, F Dreisow, et al.. Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk-cut lithium niobate[J]. Appl Phys Lett, 2008, 93(10): 101111.

    [71] R He, Q An, Y Jia, et al.. Femtosecond laser micromachining of lithium niobate depressed cladding waveguides[J]. Opt Mater Express, 2013, 3(9): 1378-1384.

    [72] F Laurell, T Calmano, S Muller, et al.. Laser-written waveguides in KTP for broadband Type II second harmonic generation [J]. Opt Express, 2012, 20(20): 22308-22313.

    [73] Y Wang, V Petrov, Y J Ding, et al.. Ultrafast generation of blue light by efficient second-harmonic generation in periodicallypoled bulk and waveguide potassium titanyl phosphate[J]. Appl Phys Lett, 1998, 73(7): 873-875.

    [74] N Dong, F Chen, J R Vazquez de Aldana. Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides[J]. Phys Status Solidi Rapid Res Lett, 2012, 6(7): 306-308.

    [75] Y Jia, J R Vazquez de Aldana, C Romero, et al.. Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation[J]. Appl Phys Express, 2012, 5(7): 072701.

    [76] Y Jia, J R Vazquez de Aldana, Q Lu, et al.. Second harmonic generation of violet light in femtosecond-laser-inscribed BiB3O6 cladding waveguides[J]. Opt Mater Express, 2013, 3(9): 1279-1284.

    [77] D Jaque, N D Psaila, R R Thomson, et al.. Ultrafast laser inscription of bistable and reversible waveguides in strontium barium niobate crystals[J]. Appl Phys Lett, 2010, 96(19): 191104.

    [78] B Qian, Y Liao, G Dong, et al.. Femtosecond laser-written waveguides in a bismuth germanate single crystal[J]. Chin Phys Lett, 2009, 26(7): 070601.

    [79] R He, Q An, J R Vazquez de Aldana, et al.. Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals[J]. Appl Opt, 2013, 52(16): 3713-3716.

    [80] T Gorelik, M Will, J Burghoff, et al.. Transmission electron microscopy studies of femtosecond laser induced modifications in quartz[J]. Appl Phys A, 2003, 76(3): 309-311.

    [81] Y Ren, F Chen, J R Vazquez de Aldana. Near-infrared lasers and self-frequency-doubling in Nd∶YCOB cladding waveguides [J]. Opt Express, 2013, 21(9): 11562-11567.

    [82] S Muller, T Calmano, P Metz, et al.. Femtosecond-laser-written diode-pumped Pr∶LiYF4 waveguide laser[J]. Opt Lett, 2012, 37(24): 5223-5225.

    [83] H Liu, Y Jia, F Chen, et al.. Continuous wave laser operation in Nd∶GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses[J]. Opt Mater Express, 2013, 3(2): 278-283.

    [84] Y Ren, J R Vazquez de Aldana, et al.. Channel waveguide lasers in Nd∶LGS crystals[J]. Opt Express, 2013, 21(5): 6503-6508.

    [85] W Nie, C Cheng, Y Jia, et al.. Dual- wavelength waveguide lasers at 1064 and 1079 nm in Nd∶YAP crystal by direct femtosecond laser writing[J]. Opt Lett, 2015, 40(10): 2437-2440.

    [86] T Calmano, J Siebenmorgen, A Paschke, et al.. Diode pumped high power operation of a femtosecond laser inscribed Yb∶YAGwaveguide laser[J]. Opt Mater Express, 2011, 1(3): 428-433.

    [87] A G Okhrimchuk, P A Obraztsov. 11-GHz waveguide Nd∶YAG laser CW mode-locked with single-layer grapheme[J]. Sci Rep, 2015, 5: 11172.

    [88] Y Tan, Q Luan, F Liu, et al.. Q-switched pulse laser generation from doublecladding Nd∶YAG ceramics waveguides[J]. Opt Express, 2013, 21(16): 18963-18968.

    [89] Y Tan, R He, J Macdonald, et al.. Q-switched Nd∶YAG channel waveguide laser through evanescent fieldinteraction with surface coated grapheme[J]. Appl Phys Lett, 2014, 105(10): 101111.

    [90] Y Ren, G Brown, R Mary, et al.. 7.8 GHz Graphene-based 2 μm monolithic waveguide laser[J]. IEEE J Sel Top Quant Electron, 2015, 21(1): 395-400.

    [91] Y Tan, Y Yao, J R Macdonald, et al.. Self-Q-switched waveguide laser based on femtosecondlaser inscribed Nd∶Cr∶YVO4 crystal[J]. Opt Lett, 2014, 39(18): 5289-5292.

    [92] H Liu, Y Tan, J R Vázquez de Aldana, et al.. Efficient laser emission from cladding waveguideinscribed in Nd∶GdVO4 crystal by direct femtosecond laser writing[J]. Opt Lett, 2014, 39(15): 4553-4556.

    [93] Z Huang, C Tu, S Zhang, et al.. Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses[J]. Opt Lett, 2010, 35(6): 877-879.

    [94] R He, I Hernandez-Palmero, C Romero, et al.. Three-dimensional dielectric crystalline waveguide beam splitters in midinfrared band by direct femtosecond laser writing[J]. Opt Express, 2014, 22(25): 31293-31298.

    [95] J Lü , Y Cheng, W Yuan, et al.. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal [J]. Opt Mater Express, 2015, 5(6): 1274-1280.

    [96] S Ringleb, K Rademaker, S Nolte, et al.. Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses[J]. Appl Phys B, 2011, 102(1): 59-63.

    [97] W Horn, S Kroesen, J Herrmann, et al.. Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing[J]. Opt Express, 2012, 20(24): 26922-26928.

    [98] F He, H Xu, Y Cheng, et al.. Fabrication of microfluidic channels with acircular cross section using spatiotemporallyfocused femtosecond laser pulses[J]. Opt Lett, 2010, 35(7): 1106-1108.

    [99] M Ams, G D Marshall, D J Spence, et al.. Slit beam shaping method forfemtosecond laser direct-writefabrication of symmetric waveguides inbulk glasses[J]. Opt Express 2005, 13(15): 5676-5681.

    CLP Journals

    [1] Jing Chenrui, Wang Zhaohui, Cheng Ya. Three-Dimensional Micro- and Nano-Machining Based on Spatiotemporal Focusing Technique of Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40005

    Jia Yuechen, Chen Feng. Advances in Dielectric Crystal Waveguides Produced by Direct Femtosecond Laser Writing[J]. Laser & Optoelectronics Progress, 2016, 53(1): 10001
    Download Citation