• Acta Optica Sinica
  • Vol. 36, Issue 10, 1026002 (2016)
Chen Yahong1、2、* and Cai Yangjian1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1026002 Cite this Article Set citation alerts
    Chen Yahong, Cai Yangjian. Laser Coherence Modulation and Its Applications[J]. Acta Optica Sinica, 2016, 36(10): 1026002 Copy Citation Text show less
    References

    [1] Young T. An account of some cases of the production of colours, not hitherto described[J]. Philosophical Transactions of the Royal Society of London, 1802(92): 387-397.

    [2] Zernike F. The concept of degree of coherence and its application to optical problems[J]. Physica, 1938, 5(8): 785-795.

    [3] Wolf E. Optics in terms of observable quantities[J]. II Nuovo Cimento, 1954, 12(6): 884-888.

    [4] Wolf E. A macroscopic theory of interference and diffraction of light from finite sources. II. Fields with a spectral range of arbitrary width[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1955, 230(1181): 246-265.

    [5] Thompson B J, Wolf E. Two-beam interference with partially coherent light[J]. J Opt Soc Am, 1957, 47(10): 895-902.

    [6] Mandel L, Wolf E. Coherence properties of optical fields[J]. Rev Mod Phys, 1965, 37(2): 231.

    [7] Mandel L, Wolf E. Opticalcoherence and quantum optics[M]. Cambridge: Cambridge University Press, 1995.

    [8] Wolf E. Introduction to thetheory of coherence and polarization of light[M]. Cambridge: Cambridge University Press, 2007.

    [9] Collett E, Wolf E. Is complete spatial coherence necessary for the generation of highly directional light beams [J]. Opt Lett, 1978, 2(2): 27-29.

    [10] Wolf E, Collett E. Partially coherent sources which produce the same far-field intensity distribution as a laser[J]. Opt Commun, 1978, 25(3): 293-296.

    [11] Friberg A T, Sudol R J. Propagation parameters of Gaussian Schell-model beams[J]. Opt Commun, 1982, 41(6): 383-387.

    [12] Deschamps J, Courjon D, Bulabois J. Gaussian Schell-model sources: An example and some perspectives[J]. J Opt Soc Am, 1983, 73(3): 256-261.

    [13] Starikov A, Wolf E. Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields[J]. J Opt Soc Am, 1982, 72(7): 923-928.

    [14] Lin Q, Cai Y. Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams[J]. Opt Lett, 2002, 27(4): 216-218.

    [15] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Phys Rev Lett, 1984, 53(11): 1057.

    [16] Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. J Opt Soc Am A, 2002, 19(9): 1794-1802.

    [17] Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian Schell beam[J]. J Opt Soc Am A, 2003, 20(5): 856-866.

    [18] Cai Y, Zhu S Y. Ghost interference with partially coherent radiation[J]. Opt Lett, 2004, 29(23): 2716-2718.

    [19] Cai Y, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Phys Rev E, 2005, 71(5): 056607.

    [20] Tong Z, Cai Y, Korotkova O. Ghost imaging with electromagnetic stochastic beams[J]. Opt Commun, 2010, 283(20): 3838-3845.

    [21] Liu X, Wang F, Zhang M, et al. Experimental demonstration of ghost imaging with an electromagnetic Gaussian Schell-model beam[J]. J Opt Soc Am A, 2015, 32(5): 910-920.

    [22] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Phys Rev Lett, 1998, 80(12): 2586.

    [23] Dubois F, Joannes L, Legros J C. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence[J]. Appl Opt, 1999, 38(34): 7085-7094.

    [24] Clark J N, Huang X, Harder R, et al. High-resolution three-dimensional partially coherent diffraction imaging[J]. Nat Commun, 2012, 3: 993.

    [25] Gureyev T E, Paganin D M, Stevenson A W, et al. Generalized eikonal of partially coherent beams and its use in quantitative imaging[J]. Phys Rev Lett, 2004, 93(6): 068103.

    [26] Mitchell M, Chen Z, Shih M, et al. Self-trapping of partially spatially incoherent light[J]. Phys Rev Lett, 1996, 77(3): 490.

    [27] Mitchell M, Segev M, Coskun T H, et al. Theory of self-trapped spatially incoherent light beams[J]. Phys Rev Lett, 1997, 79(25): 4990.

    [28] Akhmediev N, Krolikowski W, Snyder A W. Partially coherent solitons of variable shape[J]. Phys Rev Lett, 1998, 81(21): 4632.

    [29] G Wu, Cai Y. Detection of a semirough target in turbulent atmosphere by a partially coherent beam[J]. Opt Lett, 2011, 36(10): 1939.

    [30] Hall B, Lisak M, Anderson D, et al. Statistical theory for incoherent light propagation in nonlinear media[J]. Phys Rev E, 2002, 65(3): 035602.

    [31] Jeng C C, Shih M F, Motzek K, et al. Partially incoherent optical vortices in self-focusing nonlinear media[J]. Phys Rev Lett, 2004, 92(4): 043904.

    [32] Roychowdhury H, Wolf E. Effects of spatial coherence on near-field spectra[J]. Opt Lett, 2003, 28(3): 170-172.

    [33] Apostol A, Dogariu A. Coherence properties near interfaces of random media[J]. Phys Rev E, 2003, 67(5): 055601.

    [34] Apostol A, Dogariu A. Spatial correlations in the near field of random media[J]. Phys Rev Lett, 2003, 91(9): 093901.

    [35] Beams R, Canado L G, Oh S H, et al. Spatial coherence in near-field Raman scattering[J]. Phys Rev Lett, 2014, 113(18): 186101.

    [36] Canado L G, Beams R, Jorio A, et al. Theory of spatial coherence in near-field Raman scattering[J]. Phys Rev X, 2014, 4(3): 031054.

    [37] Kagalwala K H, Di Giuseppe G, Abouraddy A F, et al. Bell′s measure in classical optical coherence[J]. Nature Photon, 2013, 7(1): 72-78.

    [38] Qian X F, Little B, Howell J C, et al. Shifting the quantum-classical boundary: Theory and experiment for statistically classical optical fields[J]. Optica, 2015, 2(7): 611-615.

    [39] Hradil Z, ehek J, Snchez-Soto L L. Quantum reconstruction of the mutual coherence function[J]. Phys Rev Lett, 2010, 105(1): 010401.

    [40] Stoklasa B, Motka L, Rehacek J, et al. Wavefront sensing reveals optical coherence[J]. Nat Commun, 2014, 5: 3275.

    [41] Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Opt Lett, 2007, 32(24): 3531-3533.

    [42] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams[J]. Nature Photon, 2012, 6(7): 474-479.

    [43] Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations[J]. Opt Lett, 2011, 36(20): 4104-4106.

    [44] Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles[J]. Opt Lett, 2012, 37(14): 2970-2972.

    [45] Tong Z, Korotkova O. Nonuniformly correlated light beams in uniformly correlated media[J]. Opt Lett, 2012, 37(15): 3240-3242.

    [46] Chen Y, Wang F, Liu L, et al. Generation and propagation of a partially coherent vector beam with special correlation functions[J]. Phys Rev A, 2014, 89(1): 013801.

    [47] Wang F, Liu X, Yuan Y, et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Opt Lett, 2013, 38(11): 1814-1816.

    [48] Cui S, Chen Z, Zhang L, et al. Experimental generation of nonuniformly correlated partially coherent light beams[J]. Opt Lett, 2013, 38(22): 4821-4824.

    [49] Rodenburg B, Mirhosseini M, Magaa-Loaiza O S, et al. Experimental generation of an optical field with arbitrary spatial coherence properties[J]. J Opt Soc Am B, 2014, 31(6): A51-A55.

    [50] Voelz D, Xiao X, Korotkova O. Numerical modeling of Schell-model beams with arbitrary far-field patterns[J]. Opt Lett, 2015, 40(3): 352-355.

    [51] Hyde IV M W, Basu S, Xiao X, et al. Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source[J]. J Optics, 2015, 17(5): 055607.

    [52] Hyde IV M W, Basu S, Voelz D G, et al. Experimentally generating any desired partially coherent Schell-model source using phase-only control[J]. J Appl Phys, 2015, 118(9): 093102.

    [53] Chriki R, Nixon M, Pal V, et al. Manipulating the spatial coherence of a laser source[J]. Opt Express, 2015, 23(10): 12989-12997.

    [54] Liang C, Wang F, Liu X, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry[J]. Opt Lett, 2014, 39(4): 769-772.

    [55] Korotkova O. Random sources for rectangular far fields[J]. Opt Lett, 2014, 39(1): 64-67.

    [56] Chen Y, Wang F, Zhao C, et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam[J]. Opt Express, 2014, 22(5): 5826-5838.

    [57] Yuan Y, Liu X, Wang F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Opt Commun, 2013, 305: 57-65.

    [58] Gu Y, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence[J]. Opt Lett, 2013, 38(9): 1395-1397.

    [59] Chen R, Liu L, Zhu S, et al. Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere[J]. Opt Express, 2014, 22(2): 1871-1883.

    [60] Yu J, Chen Y, Liu L, et al. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence[J]. Opt Express, 2015, 23(10): 13467-13481.

    [61] Korotkova O, Zamurovic S A, Nelson C, Malek-Madani R, et al. Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence[C]. SPIE, 2014, 9224: 92240M.

    [62] Santarsiero M, Piquero G, de Sande J C G, et al. Difference of cross-spectral densities[J]. Opt Lett, 2014, 39(7): 1713-1716.

    [63] Gori F, Santarsiero M. Difference of two Gaussian Schell-model cross-spectral densities[J]. Opt Lett, 2014, 39(9): 2731-2734.

    [64] Ma L, Ponomarenko S A. Optical coherence gratings and lattices[J]. Opt Lett, 2014, 39(23): 6656-6659.

    [65] Ma L, Ponomarenko S A. Free-space propagation of optical coherence lattices and periodicity reciprocity[J]. Opt Express, 2015, 23(2): 1848-1856.

    [66] Wang F, Korotkova O. Random sources for beams with azimuthal intensity variation[J]. Opt Lett, 2016, 41(3): 516-519.

    [67] Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: A review[J]. J Opt Soc Am A, 2014, 31(9): 2083-2096.

    [68] Chen Y, Cai Y. Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam[J]. Opt Lett, 2014, 39(9): 2549-2552.

    [69] Chen Y, Gu J, Wang F, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Phys Rev A, 2015, 91(1): 013823.

    [70] Guo L, Chen Y, Liu L, et al. Correlation-induced changes of the degree of paraxiality of a partially coherent beam[J]. J Opt Soc Am A, 2016, 33(2): 251-257.

    [71] Li J, Korotkova O. Scattering of light from a stationary nonuniformly correlated medium[J]. Opt Lett, 2016, 41(11): 2616-2619.

    [72] Liu X, Zhao D. Trapping two types of particles with a focused generalizedmulti-Gaussian Schell model beam[J]. Opt Commun, 2015, 354: 250-255.

    [73] James D F V. Change of polarization of light beams on propagation in free space[J]. J Opt Soc Am A, 1994, 11(5): 1641-1643.

    [74] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Phys Lett A, 2003, 312(5): 263-267.

    [75] Cai Y, Wang F, Zhao C, et al. Partially coherent vector beams: From theory to experiment[J]. Vectorial Optical Fields: Fundamentals and Applications, 2013, 7: 221-273.

    [76] Crosignani B, Daino B, Di Porto P. Light scattering by a rotating disk[J]. J Appl Phys, 1971, 42(1): 399-403.

    [77] Nagata K, Umebara T. Spatialcorrelation of Gaussian beam in moving ground glass[J]. J Appl Phys, 1973, 12(5): 694.

    [78] Shirai T, Wolf E. Transformation of coherence and of the spectrum of light by a moving diffuser[J]. J Mod Opt, 2001, 48(4): 717-727.

    [79] Wang F, Cai Y. Experimental generation of a partially coherent flat-topped beam[J]. Opt Lett, 2008, 33(16): 1795-1797.

    [80] Carter W H, Bertolotti M. An analysis of the far-field coherence and radiant intensity of light scattered from liquid crystals[J]. J Opt Soc Am, 1978, 68(3): 329-333.

    [81] Ostrovsky A S, Hernndez García E. Modulation of spatial coherence of optical field by means of liquid crystal light modulator[J]. Revista mexicana de física, 2005, 51(5): 442-446.

    [82] De Santis P, Gori F, Guattari G, et al. Synthesis of partially coherent fields[J]. J Opt Soc Am A, 1986, 3(8): 1258-1262.

    [83] Nixon M, Redding B, Friesem A A, et al. Efficient method for controlling the spatial coherence of a laser[J]. Opt Lett, 2013, 38(19): 3858-3861.

    [84] Lin Q, Wang L. Optical resonators producing partially coherent flat-top beams[J]. Opt Commun, 2000, 175(4): 295-300.

    [85] Lin Q, Wang L. Generation of partially coherent laser beam directly from spatial-temporal phase modulated optical resonators[J]. J Mod Opt, 2003, 50(5): 743-754.

    [86] Turunen J, Tervonen E, Friberg A T. Acousto-optic generation of Schell-model fields[J]. Electron Lett, 1989, 25(6): 424-425.

    [87] Tervonen E, Turunen J, Friberg A T. Gaussian Schell-model beams generated with synthetic acousto-optic holograms[J]. J Opt Soc Am A, 1992, 9(5): 796-803.

    [88] Partlo W N, Oldham W G. Reducing coherence in a fifth-harmonic YAG source (213 nm) for use in microlithography[J]. J Vac Sci Technol B, 1991, 9(6): 3126-3131.

    [89] Kuzmin N, Hooft G W, Eliel E R, et al. Enhancement of spatial coherence by surface plasmons[J]. Opt Lett, 2007, 32(5): 445-447.

    [90] Gan C H, Gbur G, Visser T D. Surfaceplasmons modulate the spatial coherence of light in Young′s interference experiment[J]. Phys Rev Lett, 2007, 98(4): 043908.

    [91] Lehtolahti J, Kuittinen M, Turunen J, et al. Coherence modulation by deterministic rotating diffusers[J]. Opt Express, 2015, 23(8): 10453-10466.

    [92] Wang F, Cai Y. Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics[J]. J Opt Soc Am A, 2007, 24(7): 1937-1944.

    [93] Iaconis C, Walmsley I A. Direct measurement of the two-point field correlation function[J]. Opt Lett, 1996, 21(21): 1783-1785.

    [94] Lin J J A, Paterson D, Peele A G, et al. Measurement of the spatial coherence function of undulator radiation using a phase mask[J]. Phys Rev Lett, 2003, 90(7): 074801.

    [95] Santarsiero M, Borghi R. Measuring spatial coherence by using a reversed-wavefront Young interferometer[J]. Opt Lett, 2006, 31(7): 861-863.

    [96] Saastamoinen K, Tervo J, Turunen J, et al. Spatial coherence measurement of polychromatic light with modified Young′s interferometer[J]. Opt Express, 2013, 21(4): 4061-4071.

    [97] Wood J K, Sharma K A, Cho S, et al. Using shadows to measure spatial coherence[J]. Opt Lett, 2014, 39(16): 4927-4930.

    [98] Divitt S, Lapin Z J, Novotny L. Measuring coherence functions using non-parallel double slits[J]. Opt Express, 2014, 22(7): 8277-8290.

    [99] Divitt S, Novotny L. Spatial coherence of sunlight and its implications for light management in photovoltaics[J]. Optica, 2015, 2(2): 95-103.

    [100] Leppnen L P, Saastamoinen K, Friberg A T, et al. Detection of electromagnetic degree of coherence with nanoscatterers: Comparison with Young′s interferometer[J]. Opt Lett, 2015, 40(12): 2898-2901.

    [101] Vidal I, Fonseca E J S, Hickmann J M. Light polarization control during free-space propagation using coherence[J]. Phys Rev A, 2011, 84(3): 033836.

    [102] Korotkova O, Wolf E. Changes in the state of polarization of a random electromagnetic beam on propagation[J]. Opt Commun, 2005, 246(1): 35-43.

    [103] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185.

    [104] Schouten H, Visser T, Gbur G, et al. Creation and annihilation of phase singularities near a sub-wavelength slit[J]. Opt Express, 2003, 11(4): 371-380.

    [105] Schouten H F, Gbur G, Visser T D, et al. Phase singularities of the coherence functions in Young′s interference pattern[J]. Opt lett, 2003, 28(12): 968-970.

    [106] Marasinghe M L, Premaratne M, Paganin D M. Coherence vortices in Mie scattering of statistically stationary partially coherent fields[J]. Opt Express, 2010, 18(7): 6628-6641.

    [107] Gbur G, Visser T D. Coherence vortices in partially coherent beams[J]. Opt Commun, 2003, 222(1): 117-125.

    [108] Bogatyryova G V, Fel′de C V, Polyanskii P V, et al. Partially coherent vortex beams with a separable phase[J]. Opt lett, 2003, 28(11): 878-880.

    [109] Palacios D M, Maleev I D, Marathay A S, et al. Spatial correlation singularity of a vortex field[J]. Phys Rev Lett, 2004, 92(14): 143905.

    [110] Wang W, Hanson S G, Miyamoto Y, et al. Experimental investigation of local properties and statistics of optical vortices in random wave fields[J]. Phys Rev Lett, 2005, 94(10): 103902.

    [111] Wang W, Takeda M. Coherence current, coherence vortex, and the conservation law of coherence[J]. Phys Rev Lett, 2006, 96(22): 223904.

    [112] Wang W, Duan Z, Hanson S G, et al. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function[J]. Phys Rev Lett, 2006, 96(7): 073902.

    [113] Raghunathan S B, Schouten H F, Visser T D. Correlation singularities in partially coherent electromagnetic beams[J]. Opt Lett, 2012, 37(20): 4179-4181.

    [114] Zhang Y, Cui Y, Wang F, et al. Correlation singularities in a partially coherent electromagnetic beam with initially radial polarization[J]. Opt Express, 2015, 23(9): 11483-11492.

    [115] Simon R, Mukunda N. Twisted Gaussian Schell-model beams[J]. J Opt Soc Am A, 1993, 10(1): 95-109.

    [116] Cai Y, He S. Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere[J]. Appl Phys Lett, 2006, 89(4): 041117.

    [117] Liu L, Chen Y, Guo L, et al. Twist phase-induced changes of the statistical properties of a stochastic electromagnetic beam propagating in a uniaxial crystal[J]. Opt Express, 2015, 23(9): 12454-12467.

    [118] Serna J, Movilla J M. Orbital angular momentum of partially coherent beams[J]. Opt Lett, 2001, 26(7): 405-407.

    [119] Cai Y, Zhu S. Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain[J]. Opt Lett, 2014, 39(7): 1968-1971.

    [120] Liu L, Huang Y, Chen Y, et al. Orbital angular moment of an electromagnetic Gaussian Schell-model beam with a twist phase[J]. Opt Express, 2015, 23(23): 30283-30296.

    [121] Wang F, Cai Y, Eyyubolu H T, et al. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere[J]. Opt Lett, 2012, 37(2): 184-186.

    [122] Cai Y, Lin Q, Korotkova O. Ghost imaging with twisted Gaussian Schell-model beam[J]. Opt Express, 2009, 17(4): 2453-2464.

    [123] Tong Z, Korotkova O. Beyond the classical Rayleigh limit with twisted light[J]. Opt Lett, 2012, 37(13): 2595-2597.

    [124] Wolf E. Invariance of the spectrum of light on propagation[J]. Phys Rev Lett, 1986, 56(13): 1370.

    [125] Wolf E. Non-cosmological redshifts of spectral lines[J]. Nature, 1987, 326(6111): 363-365.

    [126] Wolf E, James D F V. Correlation-induced spectral changes[J]. Rep Prog Phys, 1996, 59(6): 771.

    [127] Kandpal H C, Wasan A, Vaishya J S, et al. Application of spatial-coherence spectroscopy for determining the angular diameters of stars: Feasibility experiment[J]. Indian J Pure Appl Phys, 1998, 36: 665-674.

    [128] James D F V, Kandpal H C, Wolf E. A new method for determining the angular separation of double stars[J]. The Astrophysical Journal, 1995, 445: 406-410.

    [129] James D F V, Wolf E. Determination of field correlations from spectral measurements with application to synthetic aperture imaging[J]. Radio science, 1991, 26(5): 1239-1243.

    [130] Kandpal H C, Vaishya J S, Joshi K C. Wolf shift and its application in spectroradiometry[J]. Opt Commun, 1989, 73(3): 169-172.

    [131] Wolf E, Shirai T, Chen H, et al. Coherence filters and their uses. I. Basic theory and examples[J]. J Mod Opt, 1997, 44(7): 1345-1353.

    [132] Shirai T, Wolf E, Chen H, et al. Coherence filters and their uses II. One-dimensional realizations[J]. J Mod Opt, 1998, 45(4): 799-816.

    [133] Zhao D, Korotkova O, Wolf E. Application of correlation-induced spectral changes to inverse scattering[J]. Opt Lett, 2007, 32(24): 3483-3485.

    [134] Yadav B K, Rizvi S A M, Raman S, et al. Information encoding by spectral anomalies of spatially coherent light diffracted by an annular aperture[J]. Opt Commun, 2007, 269(2): 253-260.

    [135] Gbur G. Partially coherent beam propagation in atmospheric turbulence[J]. J Opt Soc Am A, 2014, 31(9): 2038-2045.

    [136] Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: A review[J]. Progress in Electromagnetics Research, 2015, 150: 123-143.

    [137] Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination[J]. Nature Photon, 2012, 6(6): 355-359.

    [138] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Phys Rev A, 1995, 52(5): R3429.

    [139] Valencia A, Scarcelli G, D′Angelo M, et al. Two-photon imaging with thermal light[J]. Phys Rev Lett, 2005, 94(6): 063601.

    [140] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 11(4): 949-993.

    [141] Cai Y, Peschel U. Second-harmonic generation by an astigmatic partially coherent beam[J]. Opt Express, 2007, 15(23): 15480-15492.

    [142] Zhao C, Cai Y, Lu X, et al. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle[J]. Opt Express, 2009, 17(3): 1753-1765.

    [143] Zhao C, Cai Y, Korotkova O. Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams[J]. Opt Express, 2009, 17(24): 21472-21487.

    [144] Zhao C, Cai Y. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam[J]. Opt Lett, 2011, 36(12): 2251-2253.

    [145] Aunon J M, Nieto-Vesperinas M. Partially coherent fluctuating sources that produce the same optical force as a laser beam[J]. Opt Lett, 2013, 38(15): 2869-2872.

    [146] Chen Y, Ponomarenko S A, Cai Y. Experimental generation of optical coherence lattices[J]. Appl Phys Lett, 2016, 109(6): 061107.

    [147] Takeda M, Wang W, Duan Z, et al. Coherence holography[J]. Opt Express, 2005, 13(23): 9629-9635.

    [148] Naik D N, Ezawa T, Miyamoto Y, et al. Real-time coherence holography[J]. Opt Express, 2010, 18(13): 13782-13787.

    [149] Naik D N, Ezawa T, Miyamoto Y, et al. Phase-shift coherence holography[J]. Opt Lett, 2010, 35(10): 1728-1730.

    [150] Singh R K, Naik D N, Itou H, et al. Vectorial coherence holography[J]. Opt Express, 2011, 19(12): 11558-11567.

    CLP Journals

    [1] Lina Guo, Yongzhu Chen, Yangjian Cai. Modulation of Far-Field Propagation Properties of Nonparaxial Partially Coherent Beams with Spatial Correlation Structure[J]. Acta Optica Sinica, 2017, 37(11): 1105002

    [2] Jie Zhu, Huiqin Tang, Xiaoli Li. Focusing Properties of Partially Coherent Gaussian Beam with Cosine-Lorentz Correlated Structural Function[J]. Acta Optica Sinica, 2017, 37(11): 1126001

    Chen Yahong, Cai Yangjian. Laser Coherence Modulation and Its Applications[J]. Acta Optica Sinica, 2016, 36(10): 1026002
    Download Citation