• Journal of Infrared and Millimeter Waves
  • Vol. 36, Issue 6, 756 (2017)
HUO Shu-Chun1、2、*, HU Chun-Guang1, SHEN Wan-Fu1, LI Yan-Ning1, and HU Xiao-Tang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2017.06.020 Cite this Article
    HUO Shu-Chun, HU Chun-Guang, SHEN Wan-Fu, LI Yan-Ning, HU Xiao-Tang. Spatial uniformity of organic thin films based on reflectance difference microscopy[J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 756 Copy Citation Text show less
    References

    [1] Mazzio K A, Luscombe C K. The future of organic photovoltaics[J]. Chem Soc Rev, 2015, 44(1):78-90.

    [2] Yang X, Xu X, Zhou G. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes[J]. J. Mater. Chem. C, 2015, 3(5):913-944.

    [3] Yi Z, Wang S, Liu Y. Design of high-mobility Diketopyrrolopyrrole-based pi-conjugated copolymers for organic thin-film transistors[J]. Adv Mater, 2015, 27(24):3589-606.

    [4] Wang C, Zhang J, Long G, et al. Synthesis, structure, and air-stable N-type field-effect transistor behaviors of functionalized octaazanonacene-8,19-dione[J]. Angew Chem Int Ed Engl, 2015, 54(21):6292-6.

    [5] Kumar B, Kaushik B K, Negi Y S. Organic thin film transistors: Structures, models, materials, fabrication, and applications: A review[J]. Polymer Reviews, 2014, 54(1):33-111.

    [6] Eslamian M. Inorganic and organic solution-processed thin film devices[J]. Nano-Micro Letters, 2016, 9(1).

    [7] Huang Y, Li H, Wang Z, et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy, 2016, 22:422-438.

    [8] Cheng T, Zhang Y, Lai W Y, et al. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability[J]. Adv Mater, 2015, 27(22):3349-76.

    [9] Walia S, Shan C M, Gutruf P, et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales[J]. Applied Physics Reviews, 2015, 2(1):011303.

    [10] Weightman P, Martin D S, Cole R J, et al. Reflection anisotropy spectroscopy[J]. Reports on Progress in Physics, 2005, 68(6):1251-1341.

    [11] Zhang L, Liu C Y, Fu X, et al. Pentacene/Cu(110) interface formation monitored by in situ optical spectroscopy[J]. Physical Review B, 2014, 89(3).

    [12] Supplie O, May M M, Steinbach G, et al. Time-resolved in situ spectroscopy during formation of the GaP/Si(100) heterointerface[J]. J Phys Chem Lett, 2015, 6(3):464-9.

    [13] Hospodkova A, Pangrac J, Vyskocil J, et al. Growth of InAs/GaAs quantum dots covered by GaAsSb in multiple structures studied by reflectance anisotropy spectroscopy[J]. Journal of Crystal Growth, 2015, 414:156-160.

    [14] Hohage M, Sun L D, Zeppenfeld P. Reflectance difference spectroscopy—a powerful tool to study adsorption and growth[J]. Applied Physics A, 2005, 80(5):1005-1010.

    [15] Goletti C, Bussetti G, Chiaradia P, et al. Highly sensitive optical monitoring of molecular film growth by organic molecular beam deposition[J]. Applied Physics Letters, 2003, 83(20):4146.

    [16] Sun L D, Hohage M, Zeppenfeld P. Oxygen-induced reconstructions of Cu(110) studied by reflectance difference spectroscopy[J]. Physical Review B, 2004, 69(4).

    [18] Hu C G, Sun L D, Flores-Camacho J M, et al. A rotating-compensator based reflectance difference spectrometer for fast spectroscopic measurements[J]. Review of Scientific Instruments, 2010, 81(4):043108.

    [19] Koopmans B, Santos P V, Cardona M. Microscopic reflection difference spectroscopy on semiconductor nanostructures[J]. Physica Status Solidi (a), 1998, 170(2):307-315.

    [20] Huo S, Hu C, Shen W, et al. Normal-incidence reflectance difference spectroscopy based on a liquid crystal variable retarder[J]. Applied Optics, 2016, 55(33):9334.

    [21] Acher O, Drévillon B. A reflectance anisotropy spectrometer for real-time measurements[J]. Review of Scientific Instruments, 1992, 63(11):5332-5339.

    [22] Azzam R M, Bashara N M. Ellipsometry and polarized light[M]. Amsterdam: North-Holland, 1977.

    [23] Kratzer M, Teichert C. Thin film growth of aromatic rod-like molecules on graphene[J]. Nanotechnology, 2016, 27(29):292001.

    [24] Nickel B, Fiebig M, Schiefer S, et al. Pentacene devices: Molecular structure, charge transport and photo response[J]. Physica Status Solidi (a), 2008, 205(3):526-533.

    [25] Zhang L, Fu X, Hu C G, et al. Optical and structural properties of the pentacene/quartz (0001) interface[J]. Physical Review B, 2016, 93(7).

    [26] Macdonald B F, Law J S, Cole R J. Azimuth-dependent reflection anisotropy spectroscopy[J]. Journal of Applied Physics, 2003, 93(6):3320-3327.

    [27] Flores-Camacho J M, Weidlinger G, Sun L D, et al. Growth and optical properties of Ag clusters deposited on poly(ethylene terephthalate)[J]. Nanotechnology, 2011, 22(27):275710.

    [28] Martin D S, Zeybek O, Weightman P, et al. Optical reflectance anisotropy of the growth of Fe monolayers on W(110)[J]. Journal of Physics: Condensed Matter, 2011, 23(35):355002.

    HUO Shu-Chun, HU Chun-Guang, SHEN Wan-Fu, LI Yan-Ning, HU Xiao-Tang. Spatial uniformity of organic thin films based on reflectance difference microscopy[J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 756
    Download Citation