• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 2, 181 (2023)
Chang WANG1、2、*, Gaohui SONG1、2, Zhiyong TAN1、2, and Juncheng CAO1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.02.003 Cite this Article
    WANG Chang, SONG Gaohui, TAN Zhiyong, CAO Juncheng. Research progress on terahertz imaging technology based on semiconductor photonics devices[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 181 Copy Citation Text show less
    References

    [1] Lei X L. Current suppression and harmonic generation by intense terahertz fields in semiconductor superlattices [J]. Journal of Applied Physics, 1997, 82(2): 718-721.

    [2] Siegel P H. Terahertz technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

    [3] Ferguson B, Zhang X C. Materials for terahertz science and technology [J]. Nature Materials, 2002, 1(1): 26-33.

    [4] Liu H C, Song C Y, Wasilewski Z R, et al. Coupled electron-phonon modes in optically pumped resonant intersubband lasers [J]. Physical Review Letters, 2003, 90(7): 077402.

    [5] Cao J C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures [J]. Physical Review Letters, 2003, 91(23): 237401.

    [6] Sun B, Yao J Q. Generation of terahertz wave based on optical methods [J]. Chinese Journal of Lasers, 2006, 33(10): 1349-1359.

    [7] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105.

    [8] Zhu Y M, Chen L, Peng Y, et al. Temperature dependence of nonequilibrium transport time of electrons in bulk GaAs investigated by time-domain terahertz spectroscopy [J]. Applied Physics Letters, 2011, 99(2): 022111.

    [9] Tian Y, Liu J S, Bai Y F, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation [J]. Nature Photonics, 2017, 11(4): 242-246.

    [10] Shi S C, Paine S, Yao Q J, et al. Terahertz and far-infrared windows opened at Dome A in Antarctica [J]. Nature Astronomy, 2017, 1: 0001.

    [11] Qiu H S, Zhou L F, Zhang C H, et al. Ultrafast spin current generated from an antiferromagnet [J]. Nature Physics, 2020, 17(3): 388-394.

    [12] Zeng H X, Liang H J, Zhang Y X, et al. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip [J]. Nature Photonics, 2021, 15(10): 751-757.

    [13] Zhang X, Hu M, Zhang Z, et al. High-efficiency threshold-less Cherenkov radiation generation by a graphene hyperbolic grating in the terahertz band [J]. Carbon, 2021, 183: 225-231.

    [14] Shi W, Jiang H, Li M X, et al. Investigation of electric field threshold of GaAs photoconductive semiconductor switch triggered by 1.6 μJ laser diode [J]. Applied Physics Letters, 2014, 104(4): 042108.

    [15] Ito H, Kodama S, Muramoto Y, et al. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4): 709-727.

    [16] Khler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser [J]. Nature, 2002, 417(6885): 156-159.

    [17] Richards P L. Bolometers for infrared and millimeter waves [J]. Journal of Applied Physics, 1994, 76(1): 1-24.

    [18] Byer N E, Stokowski S E, Venables J D. Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes [J]. Applied Physics Letters, 1975, 27(12): 639-641.

    [19] Gornik E. Far infrared light emitters and detectors [J]. Physica B+C, 1984, 127(1-3): 95-103.

    [20] Haller E E. Advanced far-infrared detectors [J]. Infrared Physics & Technology, 1994, 35(2-3): 127-146.

    [21] Liu H C, Song C Y, SpringThorpe A J, et al. Terahertz quantum-well photodetector [J]. Applied Physics Letters, 2004, 84(20): 4068-4070.

    [22] Hu B B, Nuss M C. Imaging with terahertz waves [J]. Optics Letters, 1995, 20(16): 1716-1718.

    [23] Chamberlin D R, Robrish P R, Trutna W R, et al. Imaging at 3.4 THz with a quantum-cascade laser [J]. Applied Optics, 2005, 44(1): 121-125.

    [24] Kim S M, Hatami F, Harris J S, et al. Biomedical terahertz imaging with a quantum cascade laser [J]. Applied Physics Letters, 2006, 88(15): 153903.

    [25] Barbieri S, Alton J, Baker C, et al. Imaging with THz quantum cascade lasers using a Schottky diode mixer [J]. Optics Express, 2005, 13(17): 6497-6503.

    [26] Lee A W M, Qin Q, Kumar S, et al. Real-time terahertz imaging over a standoff distance(25 meters) [J]. Applied Physics Letters, 2006, 89(14): 141125.

    [27] Danylov A A, Goyette T M, Waldman J, et al. Terahertz inverse synthetic aperture radar(ISAR) imaging with a quantum cascade laser transmitter [J]. Optics Express, 2010, 18(15): 16264-16272.

    [28] Ravaro M, Jagtap V, Santarelli G, et al. Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling [J]. Applied Physics Letters, 2013, 102(9): 091107.

    [29] Dean P, Lim Y L, Valavanis A, et al. Terahertz imaging through self-mixing in a quantum cascade laser [J]. Optics Letters, 2011, 36(13): 2587-2589.

    [30] Mezzapesa F P, Columbo L L, Brambilla M, et al. Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers [J]. Applied Physics Letters, 2014, 104(4): 041112.

    [31] Wienold M, Hagelschuer T, Rothbart N, et al. Real-time terahertz imaging through self-mixing in a quantum-cascade laser [J]. Applied Physics Letters, 2016, 109(1): 011102.

    [32] Qi X Q, Bertling K, Taimre T, et al. Terahertz imaging with self-pulsations in quantum cascade lasers under optical feedback [J]. APL Photonics, 2021, 6(9): 091301.

    [33] Zhou T, Zhang R, Guo X G, et al. Terahertz imaging with quantum-well photodetectors [J]. IEEE Photonics Technology Letters, 2012, 24(13): 1109-1111.

    [34] Tan Z Y, Zhou T, Cao J C, et al. Terahertz imaging with quantum-cascade laser and quantum-well photodetector [J]. IEEE Photonics Technology Letters, 2013, 25(14): 1344-1346.

    [35] Tan Z Y, Zhou T, Fu Z L, et al. Reflection imaging with terahertz quantum-cascade laser and quantum-well photodetector [J]. Electronics Letters, 2014, 50(5): 389-391.

    [36] Qiu F C, Tan Z Y, Fu Z L, et al. Reflective scanning imaging based on a fast terahertz photodetector [J]. Optics Communications, 2018, 427: 170-174.

    [37] Qiu F C, Fu Y Z, Wang C, et al. Fast terahertz refective scanning imaging with a quantum cascade laser and a photodetector [J]. Applied Physics B, 2019, 125(5): 86.

    [38] Qiu F C, Tan Z Y, Wang C, et al. Terahertz optical scanning imaging of motionless polyurethane insulation materials [J]. Electronics Letters, 2019, 55(19): 1053-1055.

    [39] Zhou T, Tan Z Y, Gu L, et al. Three-dimensional imaging with terahertz quantum cascade laser and quantum well photodetector [J]. Electronics Letters, 2015, 51(1): 85-86.

    [40] Tan Z Y, Gu L, Xu T H, et al. Real-time reflection imaging with terahertz camera and quantum-cascade laser [J]. Chinese Optics Letters, 2014, 12(7): 070401.

    [41] Tan Z Y, Wan W J, Wang C, et al. Subwavelength resolved terahertz real-time imaging based on a compact and simplified system [J]. Chinese Optics Letters, 2022, 20(9): 091101.

    [42] Zhou Z T, Zhou T, Zhang S Q, et al. Multicolor T-ray imaging using multispectral metamaterials [J]. Advanced Science, 2018, 5(7): 1700982.

    [43] Huber A J, Keilmann F, Wittborn J, et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices [J]. Nano Letters, 2008, 8(11): 3766-3770.

    [44] Dai G B, Yang Z B, Geng G S, et al. Signal detection techniques for scattering-type scanning near-field optical microscopy [J]. Applied Spectroscopy Reviews, 2018, 3: 806-835.

    [45] Cocker T L, Jelic V, Hillenbrand R, et al. Nanoscale terahertz scanning probe microscopy [J]. Nature Photonics, 2021, 15(8): 558-569.

    [46] Yu N F, Diehl L, Cubukcu E, et al. Near-field imaging of quantum cascade laser transverse modes [J]. Optics Express, 2007, 15(20): 13227-13235.

    [47] Dean P, Mitrofanov O, Keeley J, et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser [J]. Applied Physics Letters, 2016, 108(9): 091113.

    [48] Degl’Innocenti R, Wallis R, Wei B B, et al. Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser [J]. ACS Photonics, 2017, 4(9): 2150-2157.

    [49] Qiu F C, You G J, Tan Z Y, et al. A terahertz near-field nanoscopy revealing edge fringes with a fast and highly sensitive quantum-well photodetector [J]. iScience, 2022, 25(7): 104637.

    [50] Moon K, Do Y, Lim M, et al. Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes [J]. Applied Physics Letters, 2012, 101(1): 011109.

    [51] Kuschewski F, von Ribbeck H G, Dring J, et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz [J]. Applied Physics Letters, 2016, 108(11): 113102.

    [52] Liewald C, Mastel S, Hesler J, et al. All electronic terahertz nanoscopy [J]. Optica, 2018, 5(2): 159-163.

    [53] Chen X Z, Liu X, Guo X D, et al. THz near-field imaging of extreme subwavelength metal structures [J]. ACS Photonics, 2020, 7(3): 687-694.

    [54] Li L H, Chen L, Freeman J R, et al. Multi-watt high-power THz frequency quantum cascade lasers [J]. Electronics Letters, 2017, 53(12): 799-800.

    [55] Wan W J, Li H, Cao J C. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation [J]. Optics Express, 2018, 26(2): 980-989.

    [56] Khalatpour A, Paulsen A K, Deimert C, et al. High-power portable terahertz laser systems [J]. Nature Photonics, 2021, 15(1): 16-20.

    WANG Chang, SONG Gaohui, TAN Zhiyong, CAO Juncheng. Research progress on terahertz imaging technology based on semiconductor photonics devices[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 181
    Download Citation