• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071603 (2020)
Shixun Dai1、2、*, Min Wang1、2, Yingying Wang1、2, Lulu Xu1、2, Zunfeng Hu1、2, Peiqing Zhang1、2, and Xunsi Wang1、2
Author Affiliations
  • 1Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang 315211, China
  • 2Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo, Zhejiang 315211, China
  • show less
    DOI: 10.3788/LOP57.071603 Cite this Article Set citation alerts
    Shixun Dai, Min Wang, Yingying Wang, Lulu Xu, Zunfeng Hu, Peiqing Zhang, Xunsi Wang. Review of Mid-Infrared Supercontinuum Spectrum Generation Based on Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071603 Copy Citation Text show less
    References

    [1] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [2] Kumar M, Islam M N, Terry F L et al. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source[J]. Applied Optics, 51, 2794-2807(2012).

    [3] Seddon A B. A prospective for new mid-infrared medical endoscopy using chalcogenide glasses[J]. International Journal of Applied Glass Science, 2, 177-191(2011).

    [4] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 5, 141-148(2011).

    [5] Ke K, Xia C N, Islam M N et al. Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser[J]. Optics Express, 17, 12627-12640(2009).

    [6] Yin D M, Dai S X, Wang X S et al. Research progress of infrared chalcogenide glass fibers in sensing fields[J]. Laser & Optoelectronics Progress, 50, 020010(2013).

    [7] Slusher R E, Lenz G, Hodelin J et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers[J]. Journal of the Optical Society of America B, 21, 1146-1155(2004).

    [8] Dai S X, Yu X Y, Zhang W et al. Research progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 48, 090602(2011).

    [9] Wang C, Dai S X, Zhang P Q et al. Research progress of infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 52, 030001(2015).

    [10] Wang Y Y, Dai S X, Luo B H et al. Progress in infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 53, 090005(2016).

    [11] Agrawal G P[M]. Nonlinear fiber optics, 40-117(2010).

    [12] Zhang B. Study on controllable visible supercontinuum generation and mid-IR supecontinuum generation[D]. Changsha: National University of Defense Technology, 23-34(2012).

    [13] Cheng T, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 41, 2117-2120(2016).

    [14] Ou H Y, Dai S X, Zhang P Q et al. Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber[J]. Optics Letters, 41, 3201-3204(2016).

    [15] Zhang M J, Li L, Li T T et al. Mid-infrared supercontinuum generation in chalcogenide fibers with high laser damage threshold[J]. Optics Express, 27, 29287-29296(2019).

    [16] Zhao Z M, Wang X S, Dai S X et al. 15-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 41, 5222-5225(2016).

    [17] Wang X G, Zhao Z M, Wang X S et al. Mid-infrared supercontinuum generation in low-loss single-mode Te-rich chalcogenide fiber[J]. Optical Materials Express, 9, 3487-3493(2019).

    [18] Jayasuriya D, Petersen C R, Furniss D et al. Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber[J]. Optical Materials Express, 9, 2617-2629(2019).

    [19] Wilhelm A, Boussard-Plédel C, Coulombier Q et al. Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics[J]. Advanced Materials, 19, 3796-3800(2007).

    [20] Danto S, Houizot P, Boussard-Pledel C et al. A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications[J]. Advanced Functional Materials, 16, 1847-1852(2006).

    [21] Conseil C, Bastien J C, Boussard-Plédel C et al. Te-based chalcohalide glasses for far-infrared optical fiber[J]. Optical Materials Express, 2, 1470-1477(2012).

    [22] Ogusu K, Shinkawa K. Optical nonlinearities in As2Se3 chalcogenide glasses doped with Cu and Ag for pulse durations on the order of nanoseconds[J]. Optics Express, 17, 8165-8172(2009).

    [23] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 11, 1700005(2017).

    [24] Zhao Z M, Chen P, Wang X S et al. A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion[J]. Journal of the American Ceramic Society, 102, 5172-5179(2019).

    [25] Jiao K, Yao J M, Wang X G et al. 12-152 μm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region[J]. Optics Letters, 44, 5545-5548(2019).

    [26] Li X Y, Xu Z L, Ling W W et al. Numerical simulation and analysis of photonic crystal fibers with high nonlinearity and flattened chromatic dispersion[J]. Chinese Journal of Lasers, 41, 0505003(2014).

    [27] Xia L Y, Wen J G, Zhao C J et al. Mid-infrared supercontinuum generation from microstructured chalcogenide fibers[J]. Laser & Optoelectronics Progress, 48, 041901(2011).

    [28] Zhu Q D, Wang X S, Zhang P Q et al. Fabrication and optical properties of chalcogenideAs2S3 suspended-core fiber[J]. Acta Optica Sinica, 35, 1206004(2015).

    [29] Xia K L, Wang Y Y et al. Precision fabrication of a four-hole Ge15Sb15Se70 chalcogenide suspended-core fiber for generation of a 15-12β μm ultrabroad mid-infrared supercontinuum[J]. Optical Materials Express, 9, 2196-2205(2019).

    [30] Savelli I, Mouawad O, Fatome J et al. Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers[J]. Optics Express, 20, 27083-27093(2012).

    [31] Mouawad O, Kedenburg S, Steinle T et al. Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers[J]. Applied Physics B, 122, 177(2016).

    [32] Xing S D, Kharitonov S, Hu J Q et al. Linearly chirped mid-infrared supercontinuum in all-normal-dispersion chalcogenide photonic crystal fibers[J]. Optics Express, 26, 19627-19636(2018).

    [33] Baker C, Rochette M. Highly nonlinear hybrid AsSe-PMMA microtapers[J]. Optics Express, 18, 12391-12398(2010).

    [34] Wang Y Y, Dai S X, Li G T et al. 14-72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime[J]. Optics Letters, 42, 3458-3461(2017).

    [35] Petersen C R, Engelsholm R D, Markos C et al. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers[J]. Optics Express, 25, 15336-15348(2017).

    [36] Dudley J M, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Optics Letters, 27, 1180-1182(2002).

    [37] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 78, 1135-1184(2006).

    [38] Nagasaka K, Tuan T H, Cheng T L et al. Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber[J]. Applied Physics Express, 10, 032103(2017).

    [39] Jiao K, Yao J M, Zhao Z M et al. Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber[J]. Optics Express, 27, 2036-2043(2019).

    [40] Liu L, Cheng T L, Nagasaka K et al. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion[J]. Optics Letters, 41, 392-395(2016).

    [41] Li G T, Peng X F, Dai S X et al. Highly coherent 1.5-8.3 μm broadband supercontinuum generation in tapered as-S chalcogenide fibers[J]. Journal of Lightwave Technology, 37, 1847-1852(2019).

    [42] Zhang N, Peng X F, Wang Y Y et al. Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion[J]. Optics Express, 27, 10311-10319(2019).

    [43] Liu L, Nagasaka K, Qin G S et al. Coherence property of mid-infrared supercontinuum generation in tapered chalcogenide fibers with different structures[J]. Applied Physics Letters, 108, 011101(2016).

    [44] Gattass R R, Brandon Shaw L, Nguyen V Q et al. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 18, 345-348(2012).

    [45] Duval S, Bernier M, Fortin V et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2, 623-626(2015).

    [46] Henderson-Sapir O, Munch J, Ottaway D J. Mid-infrared fiber lasers at and beyond 35 μm using dual-wavelength pumping[J]. Optics Letters, 39, 493-496(2014).

    [47] Schneide J, Carbonnier C, Unrau U B. Characterization of a Ho 3+-doped fluoride fiber laser with a 39-μm emission wavelength[J]. Applied Optics, 36, 8595-8600(1997).

    [48] Hudson D D, Antipov S, Li L Z et al. Toward all-fiber supercontinuum spanning the mid-infrared[J]. Optica, 4, 1163-1166(2017).

    [49] Kubat I, Rosenberg Petersen C, Møller U V et al. Thulium pumped mid-infrared 09-9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers[J]. Optics Express, 22, 3959-3967(2014).

    [50] Petersen C R, Moselund P M, Petersen C et al. Spectral-temporal composition matters when cascading supercontinua into the mid-infrared[J]. Optics Express, 24, 749-758(2016).

    [51] Robichaud L R, Fortin V, Gauthier J C et al. Compact 3-8 μm supercontinuum generation in a low-lossAs2Se3 step-index fiber[J]. Optics Letters, 41, 4605-4608(2016).

    [52] Yin K, Zhang B, Yao J M et al. Toward high-power all-fiber 2-5 μm supercontinuum generation in chalcogenide step-index fiber[J]. Journal of Lightwave Technology, 35, 4535-4539(2017).

    [53] Martinez R A, Plant G, Guo K W et al. Mid-infrared supercontinuum generation from 16 to >11 μm using concatenated step-index fluoride and chalcogenide fibers[J]. Optics Letters, 43, 296-299(2018).

    [54] Mohammed N. DeWilde C, Lukasz M, et al. High-power all-fiber-integrated super-continuum source from 1. 57 to 12 microns[J]. Proceedings of SPIE, 10897, 108970S(2019).

    [55] Yin K, Zhang B, Yang L Y et al. 152 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 38 μm[J]. Optics Letters, 42, 2334-2337(2017).

    [56] Thapa R, Gattass R R, Nguyen V et al. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development[J]. Optics Letters, 40, 5074-5077(2015).

    [57] Yin K, Zhang B, Yao J M et al. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers[J]. Optics Letters, 41, 946-949(2016).

    [58] Okamoto H, Kasuga K, Kubota Y. Efficient 521 nm all-fiber laser: splicing Pr 3+-doped ZBLAN fiber to end-coated silica fiber[J]. Optics Letters, 36, 1470-1472(2011).

    [59] Petersen C R, Prtljaga N, Farries M et al. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source[J]. Optics Letters, 43, 999-1002(2018).

    Shixun Dai, Min Wang, Yingying Wang, Lulu Xu, Zunfeng Hu, Peiqing Zhang, Xunsi Wang. Review of Mid-Infrared Supercontinuum Spectrum Generation Based on Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071603
    Download Citation