• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 3, 1450029 (2014)
Keisuke Hashimura1, Katsunori Ishii1, Naota Akikusa2, Tadataka Edamura2, Harumasa Yoshida2, and Kunio Awazu1、3、4、*
Author Affiliations
  • 1Medical Beam Physics Laboratory, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering Osaka University, Japan
  • 2Hamamatsu Photonics, K. K., Japan
  • 3Graduate School of Frontier Biosciences, Osaka University, Japan
  • 4The Center for Advanced Medical Engineering and Informatics Osaka University, Japan
  • show less
    DOI: 10.1142/s1793545814500291 Cite this Article
    Keisuke Hashimura, Katsunori Ishii, Naota Akikusa, Tadataka Edamura, Harumasa Yoshida, Kunio Awazu. Coagulation and ablation of biological soft tissue by quantum cascade laser with peak wavelength of 5.7 μm[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1450029 Copy Citation Text show less
    References

    [1] F. Capasso, "High-performance mid-infrared quantum cascade lasers," Opt. Eng. 49, 111102 (2010).

    [2] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, "Quantum cascade laser," Science 264, 553–556 (1994).

    [3] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. stele, M. Ilegems, E. Gini, H. Melshior, "Continuous wave operation of a mid-infrared semiconductor laser at room temperature," Science 295, 301 (2002).

    [4] R. K€ohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002).

    [5] G. Hancock, G. Ritchie, J. van Helden, R. Walker, "Applications of midinfrared quantum cascade lasers to spectroscopy," Opt. Eng. 49, 111121 (2010).

    [6] J. B. McManus, M. S. Zahniser, D. D. Nelson, Jr., J. H. Shorter, S. Herndon, E. Wood, R. Wehr, "Application of quantum cascade lasers to highprecision atmospheric trace gas measurements," Opt. Eng. 49, 111124 (2010).

    [7] T. H. Risby, F. K. Tittel, "Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis," Opt. Eng. 49, 111123 (2010).

    [8] Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, M. Razeghi, "Room temperature quantum cascade lasers with 27% wall plug efficiency," Appl. Phys. Lett. 98, 181102 (2011).

    [9] M. J. Bader, D. Tilki, G. Gratzke, R. Sroka, C. G. Stief, O. Reich, "Ho:YAG laser: Treatment of vesicourethral structures after radical prostatectomy," World J. Urol. 28, 169–172 (2010).

    [10] S. Kelbauskiene, N. Baseviciene, K. Goharkhay, A. Moritz, V. Machiulskeiene, "One-year clinical results of Er,Cr:YSGG laser application in addition to scaling and root planning in patients with early to moderate periodontitis," Lasers Med. Sci. 26, 445– 452 (2011).

    [11] S. Renvert, C. Lindahl, A. R. Jans ker, G. R. Persson, "Treatment of peri-implantitis using an Er: YAG laser on an air-abrasive device: A randomized trial," J. Clin. Periodontol. 38, 65–73 (2011).

    [12] A. M. Chapas, L. Brightman, S. Sukal, E. Hale, D. Daniel, L. J. Bernstein, R. G. Geronemus, "Successful treatment of acneiform scarring with CO2 ablative fractional resurfacing," Lasers Surg. Med. 40, 381–386 (2008).

    [13] G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd Edition, John Wiley & Sons Ltd., England (2001).

    [14] Yu. M. Andreev, A. A. Ionin, I. O. Kinyaevsky, Yu. M. Klimachev, A. Yu, Kozlov, A. A. Kotkov, G. V. Lanskii, A. V. Shaiduko, "Broadband carbon monoxide laser system operating in the wavelength range of 2.5–8.3 μm," Quantum Electron. 43, 139– 143 (2013).

    [15] G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'Day, "Tissue ablation by a free-electron laser tuned to the amide II band," Nature 371, 416–419 (2004).

    [16] J. Youn, G. M. Peavy, V. Venugopalan, "Free electron laser ablation of articular and fibro-cartilage at 2.79, 2.9, 6.1, and 6.45 μm: Mass removal studies," Lasers Surg. Med. 36, 202–209 (2005).

    [17] M. Heya, Y. Fukami, H. Nagats, Y. Nishida, K. Awazu, "Gelatin ablation wavelength dependency in the range of 5.6–6.7 μm using a mid-infrared free electron laser," Nucl. Instrum. Methods. Phys. Res. A 507, 564–568 (2003).

    [18] M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, E. D. Jansen, "The effect of freeelectron laser pulse structure on mid-infrared softtissue ablation: Biological effects," Phys. Med. Biol. 50, 1885–1899 (2005).

    [19] Y. Nakajima, K. Iwatsuki, K. Ishii, S. Suzuki, T. Fujinaka, T. Yoshimine, K. Awazu, "Medical application of an infrared free-electron laser: Selective removal of cholesterol ester in carotid artery atheromatous plaques," J.Neurosurg.104, 426–428 (2006).

    [20] H. Hazama, Y. Takatani, K. Awazu, "Integrated ultraviolet and tunable mid-infrared laser source for analysis of proteins," Proc. SPIE 6455, 645507 (2007).

    [21] M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, E. D. Jansen, "Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL)," Lasers Surg. Med. 39, 230–236 (2007).

    [22] J. Kozub, B. Ivanov, A. Jayasinghe, R. Prasad, J. Shen, M. Klosner, D. Heller, M. Mendenhall, D. W. Piston, K. Joos, M. S. Hutson, "Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-μm wavelength range," Biomed. Opt. Express 2, 1275–1281 (2011).

    [23] G. S. Edwards, R. D. Pearlstein, M. L. Copeland, M. S. Hutson, K. Latone, A. Spiro, G. Pasmanik, "6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering," Opt. Lett. 32, 1426– 1428 (2007).

    [24] B. Choi, A. J. Welch, "Analysis of thermal relaxation during laser irradiation of tissue," Lasers Surg. Med. 29, 351–359 (2001).

    [25] P. E. Dyer, "Laser ablation: Processes and applications," Proc. SPIE 3092, 412 (1997).

    [26] J. M. Auerhammer, R. Walker, A. F. G. van der Meer, B. Jean, "Dynamic behavior of photoablation products of corneal tissue in the mid-IR: A study with FELIX," Appl. Phys. B 68, 111–119 (1999).

    [27] K. Ishii, H. Tsukimoto, H. Hazama, K. Awazu, "Selective removal of cholesteryl ester in atherosclerotic plaque using nanosecond pulsed laser at 5.75 μm," Proc. SPIE 6854, 685418 (2008).

    [28] T. Kita, K. Ishii, K. Yoshikawa, K. Yasuo, K. Yamamoto, K. Awazu, "Selective excavation of human carious dentin using the nanosecond pulsed laser in 5.8-μm wavelength range," Proc. SPIE 8566, 85660B (2013).

    [29] T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929–1931 (2003).

    Keisuke Hashimura, Katsunori Ishii, Naota Akikusa, Tadataka Edamura, Harumasa Yoshida, Kunio Awazu. Coagulation and ablation of biological soft tissue by quantum cascade laser with peak wavelength of 5.7 μm[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1450029
    Download Citation