• Laser & Optoelectronics Progress
  • Vol. 56, Issue 9, 092401 (2019)
Can Zhang, Shixing Yu, Fei Long, Xiaokun Yang, and Zhengping Zhang*
Author Affiliations
  • College of Big Data and Information Engineering, Guizhou University, Guiyang, Guizhou 550025, China
  • show less
    DOI: 10.3788/LOP56.092401 Cite this Article Set citation alerts
    Can Zhang, Shixing Yu, Fei Long, Xiaokun Yang, Zhengping Zhang. Ultrathin High-Efficiency Reflective Linear Polarization Conversion Surface Using Double-E Structure for Ku-Band[J]. Laser & Optoelectronics Progress, 2019, 56(9): 092401 Copy Citation Text show less
    References

    [1] Schurig D, Mock J, Justice B et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006). http://europepmc.org/abstract/MED/17053110

    [2] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966(2000). http://europepmc.org/abstract/med/11041972

    [3] Yang B, Cheng H, Chen S Q et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourie anlysis[J]. Acta Optica Sinica, 39, 0126007(2019).

    [4] Gong B Y, Zhao X P, Pan Z Z et al. A visible metamaterial fabricated by self-assembly method[J]. Scientific Reports, 4, 04713(2014). http://www.nature.com/srep/2014/140416/srep04713/fig_tab/srep04713_F6.html

    [5] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-99(2001). http://www.ncbi.nlm.nih.gov/pubmed/11292865

    [6] Cheng Y Z, Nie Y, Gong R Z. Broadband 3D isotropic negative-index metamaterial based on fishnet structure[J]. The European Physical Journal B, 85, 62(2012). http://link.springer.com/article/10.1140/epjb/e2011-20773-9

    [7] Liu K T, Liu X, Ge Y H et al. Generation of OAM vortex beams based on high-efficiency transmission metasurfaces[J]. Acta Optica Sinica, 39, 0126015(2019).

    [8] Li Y H, Zhou L, Zhao G Z. Terahertz broadband polarization converter based on anisotropic metasurface[J]. Chinese Journal of Lasers, 45, 0314001(2018).

    [9] Iriarte J C. Pereda A T, de Falcon J L M, et al. Broadband radar cross-section reduction using AMC technology[J]. IEEE Transactions on Antennas and Propagation, 61, 6136-6143(2013).

    [10] Chen W G, Balanis C A, Birtcher C R. Checkerboard EBG surfaces for wideband radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 63, 2636-2645(2015). http://ieeexplore.ieee.org/document/7063245

    [11] Liu Y, Li K, Jia Y T et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 64, 326-331(2016). http://ieeexplore.ieee.org/document/7317535/

    [12] Jia Y T, Liu Y, Guo Y J et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 64, 179-188(2016). http://ieeexplore.ieee.org/document/7335607

    [13] Ghalyon H A, Akbari M, Sebak A. A 30 GHz linear-to-circular polarization conversion using two-layer FSS. [C]∥IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 978, 671-672(2017).

    [14] Ni C, Chen M S, Zhang Z X et al. Design of frequency-and polarization-reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 17, 78-81(2018). http://ieeexplore.ieee.org/document/8115203/

    [15] Feng M D, Wang J F, Ma H et al. Broadband polarization rotator based on multi-order plasmon resonances and high impedance surfaces[J]. Journal of Applied Physics, 114, 074508(2013). http://scitation.aip.org/content/aip/journal/jap/114/7/10.1063/1.4819017

    [16] Chen H Y, Wang J F, Ma H et al. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances[J]. Journal of Applied Physics, 115, 154504(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6799966

    [17] Mutlu M, Ozbay E. A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling[J]. Applied Physics Letters, 100, 051909(2012). http://scitation.aip.org/content/aip/journal/apl/100/5/10.1063/1.3682591

    [18] Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications, 3, 870(2012). http://pubs.acs.org/servlet/linkout?suffix=ref29/cit29&dbid=8&doi=10.1021%2Facs.nanolett.6b01897&key=22643897

    [19] Kundu D, Mohan A, Chakrabarty A. Ultrathin high-efficiency X-band reflective polarization converter using sunken double arrowhead metasurface. [C]∥Proceedings of the Asia-Pacific Microwave Conference, 16912824(2016).

    [20] Liang W, Bockrath M, Bozovic D et al. Fabry-Perot interference in a nanotube electron waveguide[J]. Nature, 411, 665-669(2001). http://europepmc.org/abstract/MED/11395762

    Can Zhang, Shixing Yu, Fei Long, Xiaokun Yang, Zhengping Zhang. Ultrathin High-Efficiency Reflective Linear Polarization Conversion Surface Using Double-E Structure for Ku-Band[J]. Laser & Optoelectronics Progress, 2019, 56(9): 092401
    Download Citation