• Photonics Research
  • Vol. 6, Issue 9, 880 (2018)
Xu Wang1, Yuhe Zhao1, Yunhong Ding2, Sanshui Xiao2, and Jianji Dong1、*
Author Affiliations
  • 1National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
  • show less
    DOI: 10.1364/PRJ.6.000880 Cite this Article Set citation alerts
    Xu Wang, Yuhe Zhao, Yunhong Ding, Sanshui Xiao, Jianji Dong. Tunable optical delay line based on integrated grating-assisted contradirectional couplers[J]. Photonics Research, 2018, 6(9): 880 Copy Citation Text show less
    References

    [1] F. Xia, L. Sekaric, Y. Vlasov. Ultracompact optical buffers on a silicon chip. Nat. Photonics, 1, 65-71(2007).

    [2] M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, N. Pleros. A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers. Proc. SPIE, 10538, 1053805(2018).

    [3] J. L. Corral, J. Marti, J. M. Fuster, R. I. Laming. True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings. IEEE Photon. Technol. Lett., 9, 1529-1531(1997).

    [4] C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, E. Burrows. Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals. J. Lightwave Technol., 22, 249-256(2004).

    [5] F. Wang, X. Zhang. Photonic generation of ultrawideband signals using a delay interferometer. Front. Optoelectron. China, 3, 179-183(2010).

    [6] Z. Hu, J. Xu, M. Hou. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay. Front. Optoelectron., 10, 180-188(2017).

    [7] R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, D. J. Blumenthal. Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications. IEEE Photon. Technol. Lett., 25, 1165-1168(2013).

    [8] V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, M. V. Drummond. Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver. Optical Fiber Communication Conference, M2G.5(2018).

    [9] H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun., 3, 867(2012).

    [10] X. Wang, B. Howley, M. Y. Chen, R. T. Chen. Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array. Appl. Opt., 46, 379-383(2007).

    [11] J. Xie, L. Zhou, Z. Li, J. Wang, J. Chen. Seven-bit reconfigurable optical true time delay line based on silicon integration. Opt. Express, 22, 22707-22715(2014).

    [12] X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, K. Wu, J. Chen. Continuously tunable ultra-thin silicon waveguide optical delay line. Optica, 4, 507-515(2017).

    [13] D. Perez, E. S. Gomariz, J. Capmany. Programmable true-time delay lines using integrated waveguide meshes. J. Lightwave Technol., PP, 1(2018).

    [14] R. Kashyap, M. de Lacerda Rocha. On the group delay characteristics of chirped fibre Bragg gratings. Opt. Commun., 153, 19-22(1998).

    [15] G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher. Optical delay lines based on optical filters. IEEE J. Quantum Electron., 37, 525-532(2001).

    [16] L. Y. Mario, M. K. Chin. Optical buffer with higher delay-bandwidth product in a two-ring system. Opt. Express, 16, 1796-1807(2008).

    [17] M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, S. S. Patel. Integrated resonance-enhanced variable optical delay lines. IEEE Photon. Technol. Lett., 17, 834-836(2005).

    [18] F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, M. Martinelli. A reconfigurable architecture for continuously variable optical slow-wave delay lines. Opt. Express, 15, 17273-17282(2007).

    [19] A. Melloni, F. Morichetti, C. Ferrari, M. Martinelli. Continuously tunable 1 byte delay in coupled-resonator optical waveguides. Opt. Lett., 33, 2389-2391(2008).

    [20] F. Morichetti, A. Melloni, C. Ferrari, M. Martinelli. Error-free continuously-tunable delay at 10  Gbit/s in a reconfigurable on-chip delay-line. Opt. Express, 16, 8395-8405(2008).

    [21] J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, J. Chen. Continuously tunable reflective-type optical delay lines using microring resonators. Opt. Express, 22, 817-823(2014).

    [22] C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, J. E. Bowers. Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators. IEEE J. Sel. Top. Quantum Electron., 24, 1-9(2018).

    [23] J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, T. F. Krauss. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express, 16, 6227-6232(2008).

    [24] J. Adachi, N. Ishikura, H. Sasaki, T. Baba. Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping. IEEE J. Sel. Top. Quantum Electron., 16, 192-199(2010).

    [25] A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, M. Sorel. Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison. IEEE Photon. J., 2, 181-194(2010).

    [26] C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, R. T. Chen. Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines. Appl. Phys. Lett., 101, 051101(2012).

    [27] C.-J. Chung, X. Xu, G. Wang, Z. Pan, R. T. Chen. On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide. Appl. Phys. Lett., 112, 071104(2018).

    [28] S. Khan, M. A. Baghban, S. Fathpour. Electronically tunable silicon photonic delay lines. Opt. Express, 19, 11780-11785(2011).

    [29] G. Brunetti, D. Conteduca, F. Dell’Olio, C. Ciminelli, M. N. Armenise. Design of an ultra-compact graphene-based integrated microphotonic tunable delay line. Opt. Express, 26, 4593-4604(2018).

    [30] I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, K. Petermann. Continuously tunable delay line based on SOI tapered Bragg gratings. Opt. Express, 20, 11241-11246(2012).

    [31] W. Shi, V. Veerasubramanian, D. Patel, D. V. Plant. Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings. Opt. Lett., 39, 701-703(2014).

    [32] D. Tan, K. Ikeda, R. Saperstein, B. Slutsky, Y. Fainman. Chip-scale dispersion engineering using chirped vertical gratings. Opt. Lett., 33, 3013-3015(2008).

    [33] R. Kashyap. Fiber Bragg Gratings(1999).

    [34] Y. Wang, S. Gao, K. Wang, H. Li, E. Skafidas. Ultra-broadband, compact, and high-reflectivity circular Bragg grating mirror based on 220  nm silicon-on-insulator platform. Opt. Express, 25, 6653-6663(2017).

    [35] Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. Jaeger, L. Chrostowski. Spiral Bragg grating waveguides for TM mode silicon photonics. Opt. Express, 23, 25295-25307(2015).

    [36] Z. Zou, L. Zhou, M. Wang, K. Wu, J. Chen. Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides. Opt. Express, 24, 12831-12839(2016).

    [37] D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, Y. Fainman. Chip-scale dispersion engineering using chirped vertical gratings. Opt. Lett., 33, 3013-3015(2008).

    [38] E. Sahin, K. J. A. Ooi, C. E. Png, D. T. H. Tan. Large on-chip dispersion using cladding-modulated 1D photonic crystals. Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), 1-3(2017).

    [39] E. Sahin, K. J. A. Ooi, C. E. Png, D. T. H. Tan. Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip. Appl. Phys. Lett., 110, 161113(2017).

    Xu Wang, Yuhe Zhao, Yunhong Ding, Sanshui Xiao, Jianji Dong. Tunable optical delay line based on integrated grating-assisted contradirectional couplers[J]. Photonics Research, 2018, 6(9): 880
    Download Citation