• Photonics Research
  • Vol. 5, Issue 6, OM1 (2017)
Li Ge1、2、*, Liang Feng3, and Harald G. L. Schwefel4
Author Affiliations
  • 1Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314, USA
  • 2The Graduate Center, CUNY, New York 10016, USA
  • 3Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
  • 4The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, University of Otago, 730 Cumberland Street, Dunedin 9016, New Zealand
  • show less
    DOI: 10.1364/PRJ.5.000OM1 Cite this Article Set citation alerts
    Li Ge, Liang Feng, Harald G. L. Schwefel. Optical microcavities: new understandings and developments[J]. Photonics Research, 2017, 5(6): OM1 Copy Citation Text show less
    References

    [1] L. Ge. Constructing the scattering matrix for optical microcavities as a nonlocal boundary value problem. Photon. Res., 5, B20-B28(2017).

    [2] S. Longhi, L. Feng. Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited]. Photon. Res., 5, B1-B6(2017).

    [3] Y. Kagoshima, S. Shinohara, S. Sunada, T. Harayama. Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited]. Photon. Res., 5, B47-B53(2017).

    [4] J. P. Hohimer, G. A. Vawter, D. C. Craft. Unidirectional operation in a semiconductor ring diode laser. Appl. Phys. Lett., 62, 1185-1187(1993).

    [5] N. L. Aung, L. Ge, O. Malik, H. E. Türeci, C. F. Gmachl. Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping. Appl. Phys. Lett., 107, 151106(2015).

    [6] S. Sunada, T. Fukushima, S. Shinohara, T. Harayama, M. Adachi. Stable single-wavelength emission from fully chaotic microcavity lasers. Phys. Rev. A, 88, 013802(2013).

    [7] T. Harayama, S. Sunada, S. Shinohara. Universal single-mode lasing in fully-chaotic two-dimensional microcavity lasers under continuous wave operation with large pumping power [Invited]. Photon. Res., 5, B39-B46(2017).

    [8] F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, S. Zhuang. Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators. Photon. Res., 5, B29-B33(2017).

    [9] S. J. Herr, K. Buse, I. Breunig. LED-pumped whispering-gallery laser. Photon. Res., 5, B34-B38(2017).

    [10] Z. Yu, H. Cui, X. Sun. Genetically optimized on-chip wideband ultracompact reflectors and Fabry-Perot cavities. Photon. Res., 5, B15-B19(2017).

    [11] X. Chen, C. S. Fenrich, M. Xue, M.-Y. Kao, K. Zang, C.-Y. Lu, E. T. Fei, Y. Chen, Y. Huo, T. I. Kamins, J. S. Harris. Tensile-strained Ge/SiGe multiple quantum well microdisks. Photon. Res., 5, B7-B14(2017).

    [12] J. Ma, X. Jiang, M. Xiao. Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates. Photon. Res., 5, B54-B58(2017).

    [13] T. Harayama, S. Shinohara. Two-dimensional microcavity lasers. Laser Photon. Rev., 5, 247-271(2010).

    [14] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [15] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [16] D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, G. Leuchs. Nonlinear and quantum optics with whispering gallery resonators. J. Opt., 18, 123002(2016).

    [17] I. Breunig. Three-wave mixing in whispering gallery resonators. Laser Photon. Rev., 10, 569-587(2016).

    [18] X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, Y.-F. Xiao. Whispering-gallery microcavities with unidirectional laser emission. Laser Photon. Rev., 10, 40-61(2016).

    [19] G. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon., 9, 828-890(2017).

    CLP Journals

    [1] Guoping Lin, Tang Sun. Mode crossing induced soliton frequency comb generation in high-Q yttria-stabilized zirconia crystalline optical microresonators[J]. Photonics Research, 2022, 10(3): 731

    [2] Xiaobao Zhang, Guoping Lin, Tang Sun, Qinghai Song, Guangzong Xiao, Hui Luo. Dispersion engineering and measurement in crystalline microresonators using a fiber ring etalon[J]. Photonics Research, 2021, 9(11): 2222

    [3] Li Ge, Liang Feng, Harald G. L. Schwefel. Optical microcavities: new understandings and developments: publisher’s note[J]. Photonics Research, 2018, 6(2): 89

    [4] Zhaohui Peng, Chunxia Jia, Yuqing Zhang, Zhonghua Zhu, Xiaojuan Liu. Multipartite entanglement generation with dipole induced transparency effect in indirectly coupled dipole-microcavity systems[J]. Chinese Optics Letters, 2018, 16(8): 082702

    [5] Yating Wan, Daisuke Inoue, Daehwan Jung, Justin C. Norman, Chen Shang, Arthur C. Gossard, John E. Bowers. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability[J]. Photonics Research, 2018, 6(8): 776

    Li Ge, Liang Feng, Harald G. L. Schwefel. Optical microcavities: new understandings and developments[J]. Photonics Research, 2017, 5(6): OM1
    Download Citation