• Acta Photonica Sinica
  • Vol. 47, Issue 9, 917001 (2018)
ZHANG Shu*, CHEN Si-yu, LIU Yu-hong, and TAN Zuo-jun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20184709.0917001 Cite this Article
    ZHANG Shu, CHEN Si-yu, LIU Yu-hong, TAN Zuo-jun. Light Diffusion in Turbid Cylinder Based on Finite Element Simulation[J]. Acta Photonica Sinica, 2018, 47(9): 917001 Copy Citation Text show less
    References

    [1] KIENLE A, PATTERSON M S. Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium[J]. Journal of the Optical Society of America A, 1997, 14(1): 246-254.

    [2] LIEMERT A, KIENLE A. Exact and efficient solution of the radiative transport equation for the semi-infinite medium[J]. Scientific Reports, 2013, 3(6): 02018.

    [3] BASSI A, CUCCIA D J, DURKIN A J, et al. Spatial shift of spatially modulated light projected on turbid media[J]. Journal of the Optical Society of America A, 2008, 25(11): 2833-2839.

    [4] FARRELL T J, PATTERSON M S, WILSON B. A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo[J]. Medical Physics, 1992, 19(4): 879-888.

    [5] MARTELLI F, CONTINI D, TADDEUCCI A, et al. Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results[J]. Applied Optics, 1997, 36(19): 4587-4599.

    [6] KIENLE A. Light diffusion through a turbid parallelepiped[J]. Journal of the Optical Society of America A, 2005, 22(9): 1883-1888.

    [7] LIEMERT A, KIENLE A. Light diffusion in a turbid cylinder. II. Layered case[J]. Optics Express, 2010, 18(9): 9266-9279.

    [8] KIENLE A, LIEMERT A. Light diffusion in a turbid cylinder. I. Homogeneous case[J]. Optics Express, 2010, 18(9): 9456-9473.

    [9] SASSAROLI A, MARTELLI F, ZACCANTI G, et al. Performance of fitting procedures in curved geometry for retrieval of the optical properties of tissue from time-resolved measurements[J]. Applied Optics, 2001, 40(1): 185-197.

    [10] FANG Zhen-huan. Development and application of a single integrating sphere system for detecting optical properties of fruit tissue[D]. Zhejiang University, 2015.

    [11] TIAN Hui-juan, NIU Ping-juan. Sensitivity of delta-P1 approximation model to the reduced scattering parameter[J]. Acta Physica Sinica, 2013, 62(3): 034201.

    [12] TIAN Hui-juan, LIU Ying, WANG Li-jun, et al. Hybrid diffusion approximation in highly absorbing media and its effects of source approximation[J]. Chinese Optics Letters, 2009, 7(6): 515-518.

    [13] LIU Ying, LIU Xiao-jun, QI Bei-bei, et el.δ-P_1 approximation model of biological tissues[J]. Acta Physica Sinica, 2011, 60(7): 074204.

    [14] QIN J, LU R. Monte Carlo simulation for quantification of light transport features in apples[J]. Computers and Electronics in Agriculture, 2009, 68(1): 44-51.

    [15] DING C, SHI S, CHEN J, et al. Analysis of light transport features in stone fruits using Monte Carlo simulation[J]. PLoS One, 2015, 10(10): e0140582.

    [16] WANG J, WANG G, XU Z . Monte Carlo simulation of photon migration path in turbid media[J]. Chinese Optics Letters, 2008, 6(7): 530-532.

    [17] WANG Z, HOU R, LAN H, et al. Light transport in multi-layered farm products by using Monte Carlo simulation and experimental investigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(5): 1-7.

    [18] WANG Xi-chang. Steady-state diffusion equation of light in semi-infinite multilayer rectangular biological tissues[J]. Acta Optica Sinica, 2016, 36(3): 0317003.

    [19] WANG Z, HOU R, LAN H, et al. Light transport in multi-layered farm products by using Monte Carlo simulation and experimental investigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(5): 1-7.

    [20] LIEMERT A, KIENLE A. Light diffusion in N-layered turbid media[C]. SPIE, 2009, 73690.

    [21] ZHANG Shun-qi, HOU Shao-hua ,ZHAO Hui-juan, et al. Frequency-domain inverse Monte Carlo simulation for the diagnosis of the early cervical cancer based on NIR diffuse measurement[J]. Acta Photonica Sinica, 2009, 38(7): 1800-1805.

    [22] TAN Z Z, XIE J, CHEN J J, et al. Optimization of detection device geometry for NIR spectroscopy using a three-layered model of stone fruit[J]. Optical Review, 2016, 23(5): 784-790.

    [23] ARRIDGE S R, SCHWEIGER M, HIRAOKA M, et al. A finite element approach for modeling photon transport in tissue[J]. Medical Physics, 1993, 20(2 Pt 1): 299-309.

    [24] WANG A, LU R, XIE L. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam[J]. Applied Optics, 2016, 55(1): 95-103.

    [25] L'HUILLIER J P. Finite element approach to photon propagation modeling in semi-infinite homogeneous and multilayered tissue structures[J]. European Physical Journal Applied Physics, 2006, 33(2): 133-146.

    [26] LIEMERT A, KIENLE A. Light diffusion in N-layered turbid media: frequency and time domains[J]. Journal of Biomedical Optics, 2010, 15(2): 025002.

    [27] ZHANG A, PIAO D, BUNTING C F, et al. Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. I. Steady-state theory[J]. Journal of the Optical Society of America A, 2010, 27(3): 648-662.

    [28] ZHANG Rui, LIU Xiao-lin, BAO Hong-ji, et al. Boundary condition′s influence on simulation of time resolved reflectance for biological tissue[J]. Acta Photonica Sinica, 2001, 30(6): 675-679.

    ZHANG Shu, CHEN Si-yu, LIU Yu-hong, TAN Zuo-jun. Light Diffusion in Turbid Cylinder Based on Finite Element Simulation[J]. Acta Photonica Sinica, 2018, 47(9): 917001
    Download Citation