• Laser & Optoelectronics Progress
  • Vol. 51, Issue 12, 120008 (2014)
Wang Fengchao*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.120008 Cite this Article Set citation alerts
    Wang Fengchao. Research Progress of Scheme of Target-Normal Sheath Acceleration Ion[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120008 Copy Citation Text show less
    References

    [1] S V Bulanov, T Zh Esirkepov, V S Khoroshkov, et al.. Oncological hadrontherapy with laser ion accelerators[J]. Phys Lett A, 2002, 299(2): 240-247.

    [2] M Borghesi, D H Campbell, A Schiavi, et al.. Electric field detection in laser-plasma interaction experiments via the proton imaging technique[J]. Phys Plasmas, 2002, 9(5): 2214-2220.

    [3] Li Yutong. Frontier of high-power-laser-based high energy density physics[J]. Laser & Optoelectronics Progress, 2010, 47(9): 093202.

    [4] Zhang Baohui, Xu Jun, Yang Qiuhong, et al.. New progress of ultrafast and ultraintense lasers based on Ti:sapphire[J]. Laser & Optoelectronics Progress, 2013, 50(4): 040003.

    [5] Zou Debin, Zhuo Hongbin, Shao Fuqiu, et al.. Laser-pulse shaping in the interaction of ultra-intense laser pulses with ultra-thin foils[J]. Acta Optica Sinica, 2012, 32(7): 0714001.

    [6] Ge Xulei, Teng Hao, Zheng Yi, et al.. Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier[J]. Chinese J Lasers, 2012, 39(4): 0402006.

    [7] Wang Hongjian, Xiao Shali, Ye Yan, et al.. Diagnosis of X-ray backlighter based on laser plasma[J]. Chinese J Lasers, 2014, 41(3): 0315001.

    [8] Shen Baifei, Zhang Xiaomei. Latest progress and prospect of laser induced particle acceleration under high energy density conditions[J]. Laser & Optoelectronics Progress, 2010, 47(9): 093201.

    [9] Bin Jianhui, Lei Anle, Yu Wei. Influence of initial plasma temperature on energetic proton generation from laserplasma interactions[J]. Chinese J Lasers, 2009, 36(6): 1416-1419.

    [10] A Abudurexiti, P Mejid. Self-generated magnetic field and hot electron energy transport in the interaction of ultraintense laser pulse with plasmas[J]. Chinese J Lasers, 2012, 39(s1): s102011.

    [11] Zhang Xingqiang, Lu Jianye. Preliminary analysis of laser sustained plasma propulsion mechanism[J]. Chinese J Lasers, 2013, 40(8): 0802008.

    [12] P A Ni, N Alexander, J J Barnard, et al.. Summary of recent experiments on focusing of target-normal-sheathaccelerated proton beam with a stack of conducting foils[J]. Phys Plasmas, 2014, 21(5): 056701.

    [13] M Passoni, C Perego, A Sgattoni, et al.. Advances in target normal sheath acceleration theory[J]. Phys Plasmas, 2013, 20(6): 060701.

    [14] Jin-Lu Liu, Min Chen, Jun Zheng, et al.. Three dimensional effects on proton acceleration by intense laser solid target interaction[J]. Phys Plasmas, 2013, 20(6): 063107.

    [15] C Perego, D Batani, A Zani, et al.. Target normal sheath acceleration analytical modeling, comparative study and developments[J]. Rev Sci Instrum, 2012, 83(2): 02B502.

    [16] Z Lecz, O Boine-Frankenheim, V Kornilov. Target normal sheath acceleration for arbitrary proton layer thickness[J]. Nucl Instrum Methods Phys Res A, 2013, 727: 51-58.

    [17] S Sinigardi, G Turchetti, F Rossi, et al.. High quality proton beams from hybrid integrated laser-drivenion acceleration systems[J]. Nucl Instrum Methods Phys Res A, 2014, 740: 99-104.

    [18] S P Hatchett, C G Brown, T E Cowan, et al.. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets[J]. Phys Plasmas, 2000, 7(5): 2076-2082.

    [19] S C Wilks, A B Langdon, T E Cowan, et al.. Energetic proton generation in ultra-intense laser-solid interactions[J]. Phys Plasmas, 2001, 8(2): 542-549.

    [20] Y Sentoku, T E Cowan, A Kemp, et al.. High energy proton acceleration in interaction of short laser pulse with dense plasma target[J]. Phys Plasmas, 2003, 10(5): 2009-2015.

    [21] T Zh Esirkepov, S V Bulanov, K Nishihara, et al.. Proposed double-layer target for the generation of high-quality laseraccelerated ion beams[J]. Phys Rev Lett, 2002, 89(17): 175003.

    [22] T Morita, T Zh Esirkepov, S V Bulanov, et al.. Tunable high-energy ion source via oblique laser pulse incident on a double-layer target[J]. Phys Rev Lett, 2008, 100(14): 145001.

    [23] Fengchao Wang, Baifei Shen, Xiaomei Zhang, et al.. High-energy monoenergetic proton bunch from laser interaction with a complex target[J]. Physics of Plasmas, 2009, 16(9): 093112.

    [24] Y J Gu, Q Kong, S Kawata, et al.. Enhancement of proton acceleration field in laser double-layer target interaction[J]. Phys Plasmas, 2013, 20(7): 070703.

    [25] S Sinigardi, G Turchetti, P Londrillo, et al.. Transport and energy selection of laser generated protons for postacceleration with a compact linac[J]. Phys Rev ST Accel B.eams, 2013, 16(3): 031301.

    [26] S M Lund, R H Cohen, P A Ni. Envelope model for passive magnetic focusing of an intense proton or ion beam propagating through thin foils[J]. Phys Rev ST Accel Beams, 2013, 16(4): 044202.

    [27] P A Ni, B G Logan, S M Lund, et al.. Feasibility study of the magnetic beam self-focusing phenomenon in a stack of conducting foils: Application to TNSA proton beams[J]. Laser Part Beams, 2013, 31(1): 81–88.

    [28] W P Wang, B F Shen, X M Zhang, et al.. Cascaded target normal sheath acceleration[J]. Phys Plasmas, 2013, 20(11): 113107.

    [29] W P Wang, B F Shen, H Zhang, et al.. Effects of nanosecond-scale prepulse on generation of high-energy protons in target normal sheath acceleration[J]. Appl Phys Lett, 2013, 102(22): 224101.

    [30] R Snavely, M Key, S Hatchett, et al.. Intense high-energy proton beams from Petawatt-laser irradiation of solids[J]. Phys Rev Lett, 2000, 85(14): 2945-2948.

    [31] M Hegelich, S Karsch, G Pretzler, et al.. MeV ion jets from short-pulse-laser interaction with thin foils[J]. Phys Rev Lett, 2002, 89(8): 085002.

    [32] H Schwoerer, S Pfotenhauer1, O Jaeckel, et al.. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets[J]. Nature, 2006, 439(7075): 445-448.

    [33] B M Hegelich, B J Albright, J Cobble, et al.. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 2006, 439(7075): 441-444.

    [34] P A Ni, S M Lund, C McGuffey, et al.. Initial experimental evidence of self-collimation of target-normal-sheathaccelerated proton beam in a stack of conducting foils[J]. Phys Plasmas, 2013, 20(8): 083111.

    [35] W P Wang, H Zhang, B Wu, et al.. Generation of low-divergence megaelectronvolt ion beams from thin foil irradiated with an ultrahigh-contrast laser[J]. Appl Phys Lett, 2012, 101(21): 214103.

    Wang Fengchao. Research Progress of Scheme of Target-Normal Sheath Acceleration Ion[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120008
    Download Citation