• Photonics Research
  • Vol. 12, Issue 1, 40 (2024)
Yuan Shen1, Xiaoqian Shu1, Lingmei Ma1, Shaoliang Yu2, Gengxin Chen3, Liu Liu3, Renyou Ge1, Bigeng Chen1、*, and Yunjiang Rao1、4
Author Affiliations
  • 1Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 311100, China
  • 2Research Center for Intelligent Optoelectronic Computing, Zhejiang Laboratory, Hangzhou 311100, China
  • 3International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
  • 4Fiber Optics Research Center (FORC), Key Laboratory of Optical Fiber Sensing and Communications, University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    DOI: 10.1364/PRJ.504867 Cite this Article Set citation alerts
    Yuan Shen, Xiaoqian Shu, Lingmei Ma, Shaoliang Yu, Gengxin Chen, Liu Liu, Renyou Ge, Bigeng Chen, Yunjiang Rao. Ultra-high extinction ratio optical pulse generation with a thin film lithium niobate modulator for distributed acoustic sensing[J]. Photonics Research, 2024, 12(1): 40 Copy Citation Text show less
    References

    [1] D. Huang, D. Lin, C. Wang. Continuous-variable quantum key distribution with 1 Mbps secure key rate. Opt. Express, 23, 17511-17519(2015).

    [2] B. Qi, C. C. W. Lim. Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator. Phys. Rev. Appl., 9, 054008(2018).

    [3] H. Lin, W. Liu, S. Sun. Influence of pulse characteristics on ghost imaging lidar system. Appl. Opt., 60, 1623-1628(2021).

    [4] W. Yi, Z. Li, Z. Zhou. Frequency-modulated chirp signals for single-photodiode based coherent LiDAR system. J. Lightwave Technol., 39, 4661-4670(2021).

    [5] C. Baker, B. Vanus, M. Wuilpart. Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR. Opt. Express, 24, 19424-19434(2016).

    [6] Q. Bai, B. Xue, H. Gu. Enhancing the SNR of BOTDR by gain-switched modulation. IEEE Photon. Technol. Lett., 31, 283-286(2018).

    [7] C. Fan, H. Li, K. Zhang. 300 km ultralong fiber optic DAS system based on optimally designed bidirectional EDFA relays. Photon. Res., 11, 968-977(2023).

    [8] Z. Wang, L. Zhang, S. Wang. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt. Express, 24, 853-858(2016).

    [9] D. Chen, Q. Liu, Z. He. 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution. J. Lightwave Technol., 37, 4462-4468(2019).

    [10] M. Ren, D. Zhou, L. Chen. Influence of finite extinction ratio on performance of phase-sensitive optical time-domain reflectometry. Opt. Express, 24, 13325-13333(2016).

    [11] A. P. Goutzoulis. Design and Fabrication of Acousto-Optic Devices(2021).

    [12] C. Wang, M. Zhang, X. Chen. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature, 562, 101-104(2018).

    [13] M. Xu, M. He, H. Zhang. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [14] S. Dutta, E. A. Goldschmidt, S. Barik. Integrated photonic platform for rare-earth ions in thin film lithium niobate. Nano Lett., 20, 741-747(2019).

    [15] Y. Jiang, X. Han, Y. Li. High-speed optical mode switch in lithium niobate on insulator. ACS Photon., 10, 2257-2263(2023).

    [16] Z. Lin, Y. Lin, H. Li. High-performance polarization management devices based on thin-film lithium niobate. Light Sci. Appl., 11, 93(2022).

    [17] M. Yu, D. Barton, R. Cheng. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature, 612, 252-258(2022).

    [18] J. Lin, S. Farajollahi, Z. Fang. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv. Photon., 4, 036001(2022).

    [19] Y. Xue, R. Gan, K. Chen. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica, 9, 1131-1137(2022).

    [20] M. Xu, Y. Zhu, F. Pittalà. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61-62(2022).

    [21] F. Valdez, V. Mere, X. Wang. Integrated O- and C-band silicon-lithium niobate Mach-Zehnder modulators with 100 GHz bandwidth, low voltage, and low loss. Opt. Express, 31, 5273-5289(2023).

    [22] M. Zhang, C. Wang, P. Kharel. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 8, 652-667(2021).

    [23] D. Zhu, L. Shao, M. Yu. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon., 13, 242-352(2021).

    [24] D. A. Miller. Perfect optics with imperfect components. Optica, 2, 747-750(2015).

    [25] J. Lin, J. Zhou, R. Wu. High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator. Micromachines, 10, 612(2019).

    [26] M. Jin, J. Chen, Y. M. Sua. High-extinction electro-optic modulation on lithium niobate thin film. Opt. Lett., 44, 1265-1268(2019).

    [27] K. Suzuki, G. Cong, K. Tanizawa. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt. Express, 23, 9086-9092(2015).

    [28] C. M. Wilkes, X. Qiang, J. Wang. 60 dB high-extinction auto-configured Mach–Zehnder interferometer. Opt. Lett., 41, 5318-5321(2016).

    [29] J. P. Salvestrini, L. Guilbert, M. Fontana. Analysis and control of the DC drift in LiNbO3 based Mach-Zehnder modulator. J. Lightwave Technol., 29, 1522-1534(2011).

    [30] S. Sun, M. He, M. Xu. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform. Photon. Res., 8, 1958-1963(2020).

    [31] M. Ma, M. Yuan, X. Zhou. Multimode waveguide bends in lithium niobate on insulator. Laser Photon. Rev., 17, 2200862(2023).

    [32] Y. Shen, Z. Ruan, K. Chen. Broadband polarization splitter-rotator on a thin-film lithium niobate with conversion-enhanced adiabatic tapers. Opt. Express, 31, 1354-1366(2023).

    [33] D. Lederer, J.-P. Raskin. Effective resistivity of fully-processed SOI substrates. Solid-State Electron., 49, 491-496(2005).

    [34] S. Liu, L. Zhu, F. Allibert. Physical models of planar spiral inductor integrated on the high-resistivity and trap-rich silicon-on-insulator substrates. IEEE Trans. Electron Devices, 64, 2775-2781(2017).

    [35] J. C. Holzgrafe. Cavity electro-optics in thin-film lithium niobate(2022).

    [36] M. Bertolotti. Waves and fields in optoelectronics. Opt. Acta, 32, 748(1985).

    [37] K.-K. Wong. Properties of Lithium Niobate, 28(2002).

    [38] G. G. Raju. Dielectrics in Electric Fields: Tables, Atoms, and Molecules(2017).

    [39] Z. Zheng, L. Lu, C. Li. High speed, low voltage polarization controller based on heterogeneous integration of silicon and lithium niobate. Optical Fiber Communication Conference, Th1A–12(2021).

    [40] C. Wang, M. Zhang, B. Stern. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).

    [41] M. Bahadori, Y. Yang, A. E. Hassanien. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express, 28, 29644-29661(2020).

    [42] W. Heni, Y. Fedoryshyn, B. Baeuerle. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat. Commun., 10, 1694(2019).

    [43] D. A. Miller. Energy consumption in optical modulators for interconnects. Opt. Express, 20, A293-A308(2012).

    [44] Y. Xu, M. Shen, J. Lu. Mitigating photorefractive effect in thin-film lithium niobate microring resonators. Opt. Express, 29, 5497-5504(2021).

    [45] Y. Xu, A. A. Sayem, L. Fan. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun., 12, 4453(2021).

    [46] M. Todd, G. Johnson, C. Chang. Passive, light intensity-independent interferometric method for fibre Bragg grating interrogation. Electron. Lett., 35, 1970-1971(1999).

    [47] X. He, X. Xu, M. Zhang. On the phase fading effect in the dual-pulse heterodyne demodulated distributed acoustic sensing system. Opt. Express, 28, 33433-33447(2020).

    [48] C. Li, Z. Liu, Y. Zhuang. Phase correction based SNR enhancement for distributed acoustic sensing with strong environmental background interference. Opt. Laser Eng., 168, 107678(2023).

    [49] A. Masoudi, T. P. Newson. Analysis of distributed optical fibre acoustic sensors through numerical modelling. Opt. Express, 25, 32021-32040(2017).

    [50] M. Wang, J. Li, H. Yao. Thin-film lithium-niobate modulator with a combined passive bias and thermo-optic bias. Opt. Express, 30, 39706-39715(2022).

    Yuan Shen, Xiaoqian Shu, Lingmei Ma, Shaoliang Yu, Gengxin Chen, Liu Liu, Renyou Ge, Bigeng Chen, Yunjiang Rao. Ultra-high extinction ratio optical pulse generation with a thin film lithium niobate modulator for distributed acoustic sensing[J]. Photonics Research, 2024, 12(1): 40
    Download Citation