• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 5, 580 (2021)
Yuan CHENG1、*, Zhen ZHANG1, Dengxin HUA1、2, Zhenfeng GONG1, and Liang MEI1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.05.003 Cite this Article
    CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang. Research progress of NO2 differential absorption lidar technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580 Copy Citation Text show less
    References

    [1] Ionov D V, Timofeyev Y M, Sinyakov V P, et al. Ground-based validation of EOS-Aura OMI NO2 vertical column data in the midlatitude mountain ranges of Tien Shan (Kyrgyzstan) and Alps (France) [J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D15S08.

    [2] Wenig M O, Cede A M, Bucsela E J, et al. Validation of OMI tropospheric NO2 column densities using direct-Sun mode Brewer measurements at NASA Goddard Space Flight Center [J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D16S45.

    [3] Valks P, Pinardi G, Richter A, et al. Operational total and tropospheric NO2 column retrieval for GOME-2 [J]. Atmospheric Measurement Techniques, 2011, 4(7): 1491-1514.

    [4] Anand J S, Monks P S, Leigh R J. An improved retrieval of tropospheric NO2 from space over polluted regions using an Earth radiance reference [J]. Atmospheric Measurement Techniques, 2015, 8(3): 1519-1535.

    [5] Cui Y Z, Lin J T, Song C Q, et al. Rapid growth in nitrogen dioxide pollution over Western China, 2005-2013 [J]. Atmospheric Measurement Techniques, 2016, 16(10): 6207-6221.

    [6] Beirle S, Kühl S, Pukit J, et al. Retrieval of tropospheric column densities of NO2 from combined SCIAMACHY nadir/limb measurements [J]. Atmospheric Measurement Techniques, 2010, 3(1): 283-299.

    [7] Zien A W, Richter A, Hilboll A, et al. Systematic analysis of tropospheric NO2 long-range transport events detected in GOME-2 satellite data [J]. Atmospheric Chemistry and Physics, 2014, 14(14): 7367-7396.

    [8] Yin X K, Zheng H D, Dong L, et al. Design and optimization of off-beam NO2 QEPAS sensor by use of E-MOCAM with a high power blue laser diode [J]. Acta Physica Sinica, 2015, 64(13): 130701.

    [9] Yi H M, Liu K, Chen W D, et al. Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy [J]. Optics Letters, 2011, 36(4): 481-483.

    [10] Hao N, Zhou B, Chen D, et al. Measurements of NO2, SO2, O3, benzene and toluene using differential optical absorption spectroscopy (DOAS) in Shanghai, China [J]. Annali Di Chimica, 2006, 96(7/8): 365-375.

    [11] Berg N, Mellqvist J, Jalkanen J P, et al. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms [J]. Atmospheric Measurement Techniques, 2012, 5(5): 1085-1098.

    [12] Rothe K W, Brinkmann U, Walther H. Applications of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption [J]. Applied Physics, 1974, 3(2): 115-119.

    [13] Galle B, Sunesson A, Wendt W. NO2-Mapping using laser-radar techniques [J]. Atmospheric Environment, 1988, 22(3): 569-573.

    [14] Boersma K F, Jacob D J, Trainic M, et al. Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in?situ surface measurements in Israeli cities [J]. Atmospheric Chemistry and Physics, 2009, 9(12): 3867-3879.

    [15] Vlemmix T, Piters A J M, Berkhout A J C, et al. Ability of the MAX-DOAS method to derive profile information for NO2: Can the boundary layer and free troposphere be separated? [J]. Atmospheric Measurement Techniques, 2011, 4(12): 2659-2684.

    [16] Gruzdev A N, Elokhov A S. Validation of Ozone Monitoring Instrument NO2 measurements using ground based NO2 measurements at Zvenigorod, Russia [J]. International Journal of Remote Sensing, 2010, 31(2): 497-511.

    [17] Schotland R M. The determination of the vertical profile of atmospheric gases by means of a ground based optical radar [J]. Proceedings of the Third Symposium on Remote Sensing of the Environmental, 1964: 215-224.

    [18] Measures R M, Pilon G. A study of tunable laser techniques for remote mapping of specific gaseous constituents of the atmosphere [J]. Opto-electronics, 1972, 4(2): 141-153.

    [19] Ahmed S A. Molecular air pollution monitoring by dye laser measurement of differential absorption of atmospheric elastic backscatter [J]. Applied Optics, 1973, 12(4): 901-903.

    [20] Byer R L, Garbuny M. Pollutant detection by absorption using Mie scattering and topographic targets as retroreflectors [J]. Applied Optics, 1973, 12(7): 1496-1505.

    [21] Mei L, Brydegaard M. Continuous-wave differential absorption lidar [J]. Laser & Photonics Reviews, 2015, 9(6): 629-636.

    [22] Hall T C, Blacet F E. Separation of the absorption spectra of NO2 and N2O4 in the range of 2400-5000A [J]. The Journal of Chemical Physics, 1952, 20(11): 1745-1749.

    [23] Ambrico P F, Amodeo A, Di Girolamo P, et al. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region [J]. Applied Optics, 2000, 39(36): 6847-6865.

    [24] Xu L. Control Software and Experimental Study on Mid-infrared DIAL [D]. Nanjing: Nanjing University of Information Science & Technology, 2018.

    [25] Xu L, Bu L B, Cai G Z, et al. Mid-infrared differential absorption lidar NO2 measurement wavelength selection and detection capability simulation [J]. Infrared and Laser Engineering, 2018, 47(10): 1030002.

    [26] Cai G Z, Bu L B, Gong Y, et al. Absorption spectrum characteristics of NO2 at 3.4 μm and its application in differential absorption lidar [J]. Acta Photonica Sinica, 2019, 48(7): 0701001.

    [27] Gong Y, Bu L B, Yang B, et al. High repetition rate mid-infrared differential absorption lidar for atmospheric pollution detection [J]. Sensors, 2020, 20(8): 2211-2222.

    [28] Cao N, Fukuchi T, Fujii T, et al. Error analysis for NO2 DIAL measurement in the troposphere [J]. Applied Physics B, 2006, 82(1): 141-148.

    [29] Cao N W, Fujii T, Fukuchi T, et al. Estimation of differential absorption lidar measurement error for NO2 profiling in the lower troposphere [J]. Optical Engineering, 2002, 41(1): 218-224.

    [30] Cheng Y, Zhang Z, Kong Z, et al. Evaluation of systematic errors for the continuous-wave NO2 differential absorption lidar employing a multimode laser diode [J]. Applied Optics, 2020, 59(29): 9087-9097.

    [31] Staehr W, Lahmann W, Weitkamp C. Range-resolved differential absorption lidar: Optimization of range and sensitivity [J]. Applied Optics, 1985, 24(13): 1950-1956.

    [32] Rothe K W, Brinkmann U, Walther H. Remote measurement of NO2 emission from a chemical factory by the differential absorption technique [J]. Applied Physics, 1974, 4(2): 181-182.

    [33] Grant W B, Hake R D, Liston E M, et al. Calibrated remote measurement of NO2 using the differential-absorption backscatter technique [J]. Applied Physics Letters, 1974, 24(11): 550-552.

    [34] Inomata H, Igarashi T. Study of laser radar system using the differential absorption method for detection of air pollutants [J]. Japanese Journal of Applied Physics, 1975, 14(11): 1751-1760.

    [35] Tsuji T, Kimura H, Higuchi Y, et al. NO2 concentration measurement in the atmosphere using differential absorption dye-laser radar technique [J]. Japanese Journal of Applied Physics, 1976, 15(9): 1743-1752.

    [36] Fredriksson K, Galle B, Nystrm K, et al. Mobile lidar system for environmental probing [J]. Applied Optics, 1981, 20(24): 4181-4189.

    [37] Fredriksson K A, Hertz H M. Evaluation of the DIAL technique for studies on NO2 using a mobile lidar system [J]. Applied Optics, 1984, 23(9): 1403-1411.

    [38] Klsch H J, Rairoux P, Wolf J P, et al. Simultaneous NO and NO2 DIAL measurement using BBO crystals [J]. Applied Optics, 1989, 28(11): 2052-2056.

    [39] Toriumi R, Tai H, Takeuchi N. Tunable solid-state blue laser differential absorption lidar system for NO2 monitoring [J]. Optical Engineering, 1996, 35(8): 2371-2375.

    [40] Nayuki T, Fukuchi T, Cao N, et al. Sum-frequency-generation system for differential absorption lidar measurement of atmospheric nitrogen dioxide [J]. Applied Optics, 2002, 41(18): 3659-3664.

    [41] Nayuki T, Marumoto K, Fujii T, et al. Development of a differential-absorption lidar system for measurement of atmospheric atomic mercury by use of the third harmonic of an LDS-dye laser [J]. Applied Optics, 2004, 43(35): 6487-6491.

    [42] Gimmestad G G, Tan D, Roberts D W. Development of a differential absorption lidar for NO2 monitoring [C]. 21st International Laser Radar Conference (ILRC21), 2002: 187-212.

    [43] Hu S X, Hu H L, Zhang Y C, et al. A new differential absorption lidar for NO2 measurements using Raman-shifted technique [J]. Chinese Optics Letters, 2003, 1(8): 435-437.

    [44] Zhang Y, Hu H, Tan K, et al. A mobile lidar system for air pollution measurement [C]. Proceedings of SPIE, 2003, 4893: 150-158.

    [45] Zhang Y C, Hu H L, Tan K, et al. Development of a mobile lidar system for air pollution monitoring [J]. Acta Optica Sinica, 2004, 24(8): 1025-1031.

    [46] Zhang Y C, Hu H L, Tan K, et al. A mobile lidar system for air pollution measurements [J]. Optoelectronic Technology & Information, 2001, 14(3): 1-5.

    [47] Zhang Y C, Hu H L, Shao S S, et al. Measurement of SO2, NO2 and O3 in Beijing by dial [J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 346-350.

    [48] Du X Y, Zhang Y C, Qu K F, et al. Measurement of lower atmosphere gas NO2 with mobile lidar [J]. Journal of Atmospheric and Environmental Optics, 2006, 1(5): 97-100.

    [49] Choi S C, Ko D K, Lee J, et al. The development of a mobile remote monitoring system by using differential absorption LIDAR technology [J]. Journal of the Korean Physical Society, 2006, 49(1): 331-336.

    [50] Volten H, Brinksma E J, Berkhout A J C, et al. NO2 lidar profile measurements for satellite interpretation and validation [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D24): D24301.

    [51] Liu Q W, Wang X B, Chen Y F, et al. Detection of atmospheric NO2 concentration by differential absorption lidar based on dye lasers [J]. Acta Optica Sinica, 2017, 37(4): 0428004.

    [53] Liu Q W, Chen Y F, Wang J, et al. Measurement of atmospheric NO2 profile using three-wavelength dual-differential absorption lidar [C]. Proceedings of SPIE, 2017, 1060: 106053L.

    [54] Mei L, Guan P, Kong Z. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique [J]. Optics Express, 2017, 25(20): A953-A962.

    [55] Mei L. Atmospheric Scheimpflug lidar technique and its progress [J]. Laser & Optoelectronics Progress, 2018, 55(9): 090004.

    CLP Journals

    [1] CAI Weiming, REN Qingying, JIANG Yanhu, WEI Hongfei, PENG Junyue, CHANG Chunyun, XUE Mei. Advances in the Research on MOEMS Gas Sensing Technology[J]. Semiconductor Optoelectronics, 2022, 43(6): 1040

    CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang. Research progress of NO2 differential absorption lidar technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580
    Download Citation