• Acta Optica Sinica
  • Vol. 40, Issue 1, 0111008 (2020)
Siqing Dai1、2、3, Jiazhen Dou1、2、3, Jiwei Zhang1、2、3, Jianglei Di1、2、3、*, and Jianlin Zhao1、2、3、**
Author Affiliations
  • 1School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
  • 2Shaanxi Key Laboratory of Optical Information Technology, Xi'an, Shaanxi 710072, China
  • 3Ministry of Education Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Xi'an, Shaanxi 710072, China
  • show less
    DOI: 10.3788/AOS202040.0111008 Cite this Article Set citation alerts
    Siqing Dai, Jiazhen Dou, Jiwei Zhang, Jianglei Di, Jianlin Zhao. Digital Holography Based Near-field Imaging and Its Application[J]. Acta Optica Sinica, 2020, 40(1): 0111008 Copy Citation Text show less
    References

    [1] Courjon D, Bainier C. Near field microscopy and near field optics[J]. Reports on Progress in Physics, 57, 989-1028(1994).

    [2] Girard C, Dereux A. Near-field optics theories[J]. Reports on Progress in Physics, 59, 657-699(1996).

    [3] Taitt C R, Anderson G P, Ligler F S. Evanescent wave fluorescence biosensors: advances of the last decade[J]. Biosensors and Bioelectronics, 76, 103-112(2016).

    [4] Kawata S. Near-field optics and surface plasmon polaritons[M]. Berlin, Heidelberg: Springer(2001).

    [5] Dunn R C. Near-field scanning optical microscopy[J]. Chemical Reviews, 99, 2891-2928(1999).

    [6] Ma C B, Liu Z W. A super resolution metalens with phase compensation mechanism[J]. Applied Physics Letters, 96, 183103(2010).

    [7] Lu D, Liu Z W. Hyperlenses and metalenses for far-field super-resolution imaging[J]. Nature Communications, 3, 1205(2012).

    [8] Barbry M, Koval P, Marchesin F et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics[J]. Nano Letters, 15, 3410-3419(2015).

    [9] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [10] Jiang R H, Chen C, Lin D Z et al. Near-field plasmonic probe with super resolution and high throughput and signal-to-noise ratio[J]. Nano Letters, 18, 881-885(2018).

    [11] Masson J F. Surface plasmon resonance clinical biosensors for medical diagnostics[J]. ACS Sensors, 2, 16-30(2017).

    [12] Notcovich A G, Zhuk V, Lipson S G. Surface plasmon resonance phase imaging[J]. Applied Physics Letters, 76, 1665-1667(2000).

    [13] Balistreri M L M, Korterik J P, Kuipers L et al. Local observations of phase singularities in optical fields in waveguide structures[J]. Physical Review Letters, 85, 294-297(2000).

    [14] Axelrod D, Thompson N L, Burghardt T P. Total internal reflection fluorescent microscopy[J]. Journal of Microscopy, 129, 19-28(1983).

    [15] Kobitski A Y, Heyes C D, Nienhaus G U. Total internal reflection fluorescence microscopy: a powerful tool to study single quantum dots[J]. Applied Surface Science, 234, 86-92(2004).

    [16] Gumpp H, Stahl S W, Strackharn M et al. Ultrastable combined atomic force and total internal fluorescence microscope[J]. Review of Scientific Instruments, 80, 063704(2009).

    [17] Chan C U, Ohl C D. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics[J]. Physical Review Letters, 109, 174501(2012).

    [18] Roostaie N, Sheykhi E, Japelaghi F et al. A thin layer imaging with the total internal reflection fluorescence microscopy[J]. Journal of Optoelectronical Nanostructures, 2, 47-54(2017).

    [19] Song D, Yang R, Wang H L et al. Development of dual-color total internal reflection fluorescence biosensor for simultaneous quantitation of two small molecules and their affinity constants with antibodies[J]. Biosensors and Bioelectronics, 126, 824-830(2019).

    [20] Chiu M H, Lee J Y, Su D C. Complex refractive-index measurement based on Fresnel's equations and the uses of heterodyne interferometry[J]. Applied Optics, 38, 4047-4052(1999).

    [21] Jian Z C, Hsieh P J, Hsieh H C et al. A method for measuring two-dimensional refractive index distribution with the total internal reflection of p-polarized light and the phase-shifting interferometry[J]. Optics Communications, 268, 23-26(2006).

    [22] Chu Y C, Chang W Y, Chen K H et al. Full-field refractive index measurement with simultaneous phase-shift interferometry[J]. Optik, 125, 3307-3310(2014).

    [23] Hinman S S. McKeating K S, Cheng Q. Surface plasmon resonance: material and interface design for universal accessibility[J]. Analytical Chemistry, 90, 19-39(2018).

    [24] Kretschmann E, Raether H. Notizen: radiative decay of non radiative surface plasmons excited by light[J]. Zeitschrift Für Naturforschung A, 23, 2135-2136(1968).

    [25] Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance[J]. Sensors and Actuators, 3, 79-88(1982).

    [26] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 54, 3-15(1999).

    [27] Green R J, Frazier R A, Shakesheff K M et al. Surface plasmon resonance analysis of dynamic biological interactions with biomaterials[J]. Biomaterials, 21, 1823-1835(2000).

    [28] Steiner G. Surface plasmon resonance imaging[J]. Analytical and Bioanalytical Chemistry, 379, 328-331(2004).

    [29] Yih J N, Chien F C, Lin C Y et al. Angular-interrogation attenuated total reflection metrology system for plasmonic sensors[J]. Applied Optics, 44, 6155-6162(2005).

    [30] Huang Z H, Wang X P, Zhan S Y et al. Contrast-enhancing polarization control method for surface plasmon imaging sensor[J]. Optical Engineering, 51, 094402(2012).

    [31] Lan G Q, Liu S G, Zhang X R et al. A simplified high figure-of-merit prism-free surface plasmon resonance refractive index sensor based on self adaptive angular interrogation[J]. Review of Scientific Instruments, 86, 025006(2015).

    [32] Wu L M, Guo J, Wang Q K et al. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor[J]. Sensors and Actuators B: Chemical, 249, 542-548(2017).

    [33] Nikitin P I, Beloglazov A A, Kochergin V E et al. Surface plasmon resonance interferometry for biological and chemical sensing[J]. Sensors and Actuators B: Chemical, 54, 43-50(1999).

    [34] Lee J Y, Shih H C, Hong C T et al. Measurement of refractive index change by surface plasmon resonance and phase quadrature interferometry[J]. Optics Communications, 276, 283-287(2007).

    [35] Patskovsky S, Meunier M, Prasad P N et al. Self-noise-filtering phase-sensitive surface plasmon resonance biosensing[J]. Optics Express, 18, 14353-14358(2010).

    [36] Huang Y H, Ho H P, Wu S Y et al. Phase sensitive SPR sensor for wide dynamic range detection[J]. Optics Letters, 36, 4092-4094(2011).

    [37] Shao Y H, Li Y, Gu D Y et al. Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor[J]. Optics Letters, 38, 1370-1372(2013).

    [38] Liu C, Liu Q G, Hu X T. SPR phase detection for measuring the thickness of thin metal films[J]. Optics Express, 22, 7574-7580(2014).

    [39] Bera M, Banerjee J, Ray M. Experimental surface plasmon resonance modulated radially sheared interference imaging using a birefringent lens[J]. Applied Physics Letters, 104, 251104(2014).

    [40] Kabashin A V, Patskovsky S, Grigorenko A N. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing[J]. Optics Express, 17, 21191-21204(2009).

    [41] Rothenhäusler B, Knoll W. Surface-plasmon microscopy[J]. Nature, 332, 615-617(1988).

    [42] Berger C E H, Kooyman R P H, Greve J. Resolution in surface plasmon microscopy[J]. Review of Scientific Instruments, 65, 2829-2836(1994).

    [43] Flätgen G, Krischer K, Pettinger B et al. Two-dimensional imaging of potential waves in electrochemical systems by surface plasmon microscopy[J]. Science, 269, 668-671(1995).

    [44] Brockman J M, Nelson B P, Corn R M. Surface plasmon resonance imaging measurements of ultrathin organic films[J]. Annual Review of Physical Chemistry, 51, 41-63(2000).

    [45] Kim I, Kihm K D. Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids[J]. Optics Letters, 35, 393-395(2010).

    [46] MacGriff C, Wang S P, Wiktor P et al. Charge-based detection of small molecules by plasmonic-based electrochemical impedance microscopy[J]. Analytical Chemistry, 85, 6682-6687(2013).

    [47] Huang B, Yu F, Zare R N. Surface plasmon resonance imaging using a high numerical aperture microscope objective[J]. Analytical Chemistry, 79, 2979-2983(2007).

    [48] Tan P S, Yuan X C, Lin J et al. Surface plasmon polaritons generated by optical vortex beams[J]. Applied Physics Letters, 92, 111108(2008).

    [49] Su Y D, Chiu K C, Chang N S et al. Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy[J]. Optics Express, 18, 20125-20135(2010).

    [50] Wang S, Shan X, Patel U et al. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance[J]. Proceedings of the National Academy of Sciences, 107, 16028-16032(2010).

    [51] Wang Y X, Shan X N, Cui F J et al. Electrochemical reactions in subfemtoliter-droplets studied with plasmonics-based electrochemical current microscopy[J]. Analytical Chemistry, 87, 494-498(2015).

    [52] Toma K, Kano H, Offenhäusser A. Label-free measurement of cell-electrode cleft gap distance with high spatial resolution surface plasmon microscopy[J]. ACS Nano, 8, 12612-12619(2014).

    [53] Peterson A W, Halter M, Tona A et al. High resolution surface plasmon resonance imaging for single cells[J]. BMC Cell Biology, 15, 35(2014).

    [54] Chen Z X, Shan X N, Guan Y et al. Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy[J]. ACS Nano, 9, 11574-11581(2015).

    [55] Yang Y Z, Yu H, Shan X N et al. Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique[J]. Small, 11, 2878-2884(2015).

    [56] Shan X N, Chen S, Wang H et al. Mapping local quantum capacitance and charged impurities in graphene via plasmonic impedance imaging[J]. Advanced Materials, 27, 6213-6219(2015).

    [57] Chao Y C, Shan X N, Tao N J. Appling plasmonics based electrochemical microscopy to thin-layer electrochemistry[J]. Journal of Electroanalytical Chemistry, 781, 161-165(2016).

    [58] Kreysing E, Hassani H, Hampe N et al. Nanometer-resolved mapping of cell-substrate distances of contracting cardiomyocytes using surface plasmon resonance microscopy[J]. ACS Nano, 12, 8934-8942(2018).

    [59] Kim M K. Digital holographic microscopy[M]. New York, NY: Springer, 1-8(2011).

    [60] Di J L, Zhao J L, Jiang H Z et al. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning[J]. Applied Optics, 47, 5654-5659(2008).

    [61] Di J L, Zhao J L, Fan Q et al. Phase correction of wavefront reconstruction in digital holographic microscopy[J]. Acta Optica Sinica, 28, 56-61(2008).

    [62] Di J L, Zhao J L, Sun W W et al. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting[J]. Optics Communications, 282, 3873-3877(2009).

    [63] Di J L, Li Y, Xie M et al. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry[J]. Applied Optics, 55, 7287-7293(2016).

    [64] Di J L, Yu Y, Wang Z M et al. Quantitative measurement of thermal lensing in diode-side-pumped Nd∶YAG laser by use of digital holographic interferometry[J]. Optics Express, 24, 28185-28193(2016).

    [65] Ma C J, Li Y, Zhang J W et al. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer[J]. Optics Express, 25, 13659-13667(2017).

    [66] Li Y, Di J L, Ma C J et al. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation[J]. Optics Express, 26, 586-593(2018).

    [67] Xi T L, Di J L, Li Y et al. Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry[J]. Optics Express, 26, 28497-28504(2018).

    [68] Dou J Z, Xi T L, Ma C J et al. Measurement of full polarization states with hybrid holography based on geometric phase[J]. Optics Express, 27, 7968-7978(2019).

    [69] Hu C Y, Zhong J G, Weng J W. Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes[J]. Journal of Biomedical Optics, 15, 056015(2010).

    [70] Li S P, Zhong J G. Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography[J]. Biomedical Optics Express, 3, 3190-3202(2012).

    [71] Mandracchia B, Pagliarulo V, Paturzo M et al. Surface plasmon resonance imaging by holographic enhanced mapping[J]. Analytical Chemistry, 87, 4124-4128(2015).

    [72] Zhang J W, Di J L, Li Y et al. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection[J]. Optics Express, 23, 27328-27334(2015).

    [73] Zhang J W, Ma C J, Dai S Q et al. Transmission and total internal reflection integrated digital holographic microscopy[J]. Optics Letters, 41, 3844-3847(2016).

    [74] Xiao C D, Sui S F. Characterization of surface plasmon resonance biosensor[J]. Sensors and Actuators B: Chemical, 66, 174-177(2000).

    [75] Zhang J W, Dai S Q, Ma C J et al. Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance[J]. Applied Optics, 56, 3223-3228(2017).

    [76] Zhang J W, Dai S Q, Zhong J Z et al. Wavelength-multiplexing surface plasmon holographic microscopy[J]. Optics Express, 26, 13549-13560(2018).

    [77] Wang Q H, Kalantar-Zadeh K, Kis A et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 7, 699-712(2012).

    [78] Liu C H, Chang Y C, Norris T B et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 9, 273-278(2014).

    [79] Li L K, Yu Y J, Ye G J et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 9, 372-377(2014).

    [80] Dai S Q, Lu H, Zhang J W et al. Complex refractive index measurement for atomic-layer materials via surface plasmon resonance holographic microscopy[J]. Optics Letters, 44, 2982-2985(2019).

    [81] Dai S Q, Zhang J W, Lu H et al. Integrated digital holographic microscopy based on surface plasmon resonance[J]. Optics Express, 26, 25437-25445(2018).

    [82] Zhang J W, Dai S Q, Ma C J et al. Compact surface plasmon holographic microscopy for near-field film mapping[J]. Optics Letters, 42, 3462-3465(2017).

    [83] Lu H, Dai S Q, Yue Z J et al. Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring[J]. Nanoscale, 11, 4759-4766(2019).

    Siqing Dai, Jiazhen Dou, Jiwei Zhang, Jianglei Di, Jianlin Zhao. Digital Holography Based Near-field Imaging and Its Application[J]. Acta Optica Sinica, 2020, 40(1): 0111008
    Download Citation