• Laser & Optoelectronics Progress
  • Vol. 55, Issue 10, 101702 (2018)
Liang Xiyue, Hou Mengdi, Zhang Tingting, Qiu Chengyu, and Wang Wenjie
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.101702 Cite this Article Set citation alerts
    Liang Xiyue, Hou Mengdi, Zhang Tingting, Qiu Chengyu, Wang Wenjie. High Resolution Melting Technology Based on Fabry-Perot Microcavity Laser[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101702 Copy Citation Text show less
    References

    [1] Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science, 1998, 280(5366): 1077-1082.

    [2] Christopoulos T K. Nucleic acid analysis[J]. Analytical Chemistry, 1999, 71(18): 425-438.

    [3] Hawkins R D, Hon G C, Ren B. Next-generation genomics: an integrative approach[J]. Nature Reviews Genetics, 2010, 11(7): 476-486.

    [4] Wittwer C T. High-resolution genotyping by amplicon melting analysis using LCGreen[J]. Clinical Chemistry, 2003, 49(6): 853-860.

    [5] Reed G H, Wittwer C T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis[J]. Clinical Chemistry, 2004, 50(10): 1748-1754.

    [6] Montgomery J, Wittwer C T, Palais R, et al. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis[J]. Nature Protocols, 2007, 2(1): 59-66.

    [7] Gudnason H, Dufva M, Bang D D, et al. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature[J]. Nucleic Acids Research, 2007, 35(19): e127.

    [8] Rodriguez López C M, Guzmán Asenjo B, Lloyd A J, et al. Direct detection and quantification of methylation in nucleic acid sequences using high-resolution melting analysis[J]. Analytical Chemistry, 2010, 82(21): 9100-9108.

    [9] Zeng X Y, Zhang K D, Pan J, et al. Chemiluminescence detector based on a single planar transparent digital microfluidic device[J]. Lab on A Chip, 2013, 13(14): 2714-2720.

    [10] Ju Y R, Song J, Geng Z X, et al. A microfluidics cytometer for mice anemia detection[J]. Lab on A Chip, 2012, 12(21): 4355-4362.

    [11] Lee W, Fan X D. Intracavity DNA melting analysis with optofluidic lasers[J]. Analytical Chemistry, 2012, 84(21): 9558-9563.

    [12] Shopova S I, Cupps J M, Zhang P, et al. Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer[J]. Optics Express, 2007, 15(20): 12735-12742.

    [13] Lee W, Li H, Suter J D, et al. Tunable single mode lasing from an on-chip optofluidic ring resonator laser[J]. Applied Physics Letters, 2011, 98(6): 061103.

    [14] Wang W J, Zhou C H, Zhang T T, et al. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities[J]. Lab on A Chip, 2015, 15(19): 3862-3869.

    [15] Zhang T T, Zhou C H, Wang W J, et al. Generation of low-threshold optofluidic lasers in a stable Fabry-Pérot microcavity[J]. Optics & Laser Technology, 2017, 91: 108-111.

    [16] SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics[J]. Proceedings of the National Academy of Sciences, 1998, 95(4): 1460-1465.

    [17] Li W Y, Wang P, Zhang J W, et al. Three-dimensional visualization for numerical simulation data of laser transmission[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111410.

    [18] Zhang X H, Liu C, Liang C, et al. Microlens array applied for laser induced fluorescence detection[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080402.

    Liang Xiyue, Hou Mengdi, Zhang Tingting, Qiu Chengyu, Wang Wenjie. High Resolution Melting Technology Based on Fabry-Perot Microcavity Laser[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101702
    Download Citation